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The identifiability of three diffusion properties (diffusion coefficientD, partition coefficientK, and convective
mass transfer coefficienthm) from desorption kinetics (or equivalently sorption kinetics) was investigated
from a new approximated analytical solution of 1D diffusion coupled with a Robin boundary condition. A
generalized least-squares criterion, which extends classical identification techniques, was proposed. The
robustness of classical and modified criteria was compared on both experimental and simulated data including
different sampling strategies and noise levels. Confidence intervals and bias were calculated for a large set
of conditions: desorption levels ranged between 30% and 100% (equilibrium), the dilution factor ranged
between 10-3 and 10-1, mass Biot numbers ranged between 10-1 and 104, and theK value ranged between
10-3 and 5.

1. Introduction
Diffusion transport of solutes, reactants, or pollutants between

a solid and a fluid phase has major importance in many scientific
and technological areas and has been extensively studied from
the experimental point of view.1-3 Conventionally, the different
properties that control the sorption or desorption rate (diffusion
coefficient in the solid phase,D; partition coefficient between
both phases,K; and interfacial mass transfer coefficient,hm)
have been estimated from independent experiments so that
internal, interfacial, and thermodynamical phenomena may be
separated.4,5 This work analyzes the identifiability and identi-
fication of several diffusion propertiesp ) [D,K,hm]′ from a
single desorption/sorption kinetic, which may be subjected to
physical constraints. This work is motivated by the need to
achieve standard diffusion coefficients of additives and mono-
mers in plastic materials when they are put in contact with food
simulants. These diffusion coefficients can be used subsequently
to test the compliance of food contact materials as acknowledged
by the EU Directive 2002/72/EC6 or to perform a priori sanitary
surveys of food contact materials.7

Two generic constraints are considered: (i) when the
macroscopic thermodynamic equilibrium is not reached (in-
complete sorption/desorption kinetics) and (ii) when a significant
contribution of interfacial mass transport resistances is expected.
The first situation occurs when the final equilibrium desorption/
sorption state is either not observed or nonobservable (e.g.,
because of prohibitive diffusion time, material aging, uncon-
trolled mass losses, or reactions). The second situation is met
when the diffusant has a low chemical affinity for the liquid
phase (thermodynamical limitation of mass transfer) and/or when
the mass transfer resistance in the fluid phase is significant
consequent to the viscosity of the fluid phase or consequent to
the large resistance to the diffusion encountered in the solid
phase (e.g., very thick materials or very low diffusion coef-
ficients). Falsely neglecting thermodynamic and external mass
transfer contributions, when they are not negligible, leads to a

significant overestimation of the internal mass transport resis-
tance in the solid phase and, therefore, to a significant
underestimation of the “true” diffusion coefficient in the solid
phase (D). Such a bias inD estimation may yield erroneous
conclusions if the value is included within a database, used for
the optimization of either a process or a formulation, or used
for regulation purposes.

The identification of the unknown vector of parameters,p,
from desorption or sorption kinetic data is commonly obtained
by minimizing iteratively a merit functionø2(p) that assesses
the closeness of experimental data (e.g., average concentration
either in the solid phase or in the fluid phase) to simulated ones.
A maximum likelihood estimator,p̂, is intuitively assumed to
exist, to be unique, and to occur when the minimum ofø2(p) is
reached. In practice, the identification of several properties from
nonoptimally designed experiments may fail or may lead to
unreliable results.8 Indeed, this approach assumes implicitly (i)
that the system is identifiable and (ii) that the measurement
errors are independent and identically distributed with zero
mean. In particular, when errors do not fulfill such a hypothesis
(e.g., because of data including colored noise or correlations),
uncertainty increases drastically and least-squares estimators are
biased.9-11

The paper is organized as follows. The issue of feasibility of
the simultaneous identification of three properties from a single
desorption/sorption kinetic is theoretically discussed in Section
2. The analysis is based on a novel algebraic solution of the
general dimensionless 1D mass transport problem governing
the desorption/sorption kinetic. The original partial differential
equation (PDE) describing the mass transport problem is
replaced by an algebraic differential equation (DAE) describing
the trajectory of the sole measurable quantity. As a result, the
evolution of the concentration either in the solid or in the liquid
phase is described in a new approximation space, called kinetic
phase diagram (KPD), where the concentration value at equi-
librium can be more easily extrapolated and where the contribu-
tions of internal and external mass transfer resistances can be
more easily distinguished.

The rest of the work presents identification results on practical
cases based on on both experimental and simulated data. The
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performances of both the standard criterion,ø2(p), and the
generalized least-squares criterion derived from KPD,ø2*(p),
are tested in terms of bias and uncertainty. Section 3 briefly
presents experimental conditions that were used to monitor
almost continuously the diffusion of a UV tracer from a
suspension of low-density polyethylene to different food simu-
lants. Since a time differentiation of the concentration is required
for KPD, a robust nondeterministic differentiation technique of
kinetic data is also presented. Section 4 discusses the global
performance of both criteria from experimental data. Section 5
presents a detailed sensitivity analysis of both strategies for a
large set of training data corresponding to different desorption
rates (from 30% to 100% of the equilibrium value), sampling
strategies, and mass Biot values. The conclusions and a general
discussion on the conditions that can be practically used to
identify three diffusion transport properties from a single
desorption/sorption kinetic follow in Section 6.

2. Theoretical Section: The Forward Problem and Its
Approximation

This section describes the unsteady diffusion of a species from
a solid phase toward a fluid phase (desorption kinetic) when
no reaction and interaction (plasticization, swelling) occur
between the solid and a liquid. The reverse transport corre-
sponding to the sorption case is not presented but it can be easily
extended from presented results. The solid phase is noted S.
The fluid phase is noted L because it is envisioned mainly as a
liquid, but the boundary and thermodynamic conditions are
generic enough to be also valid for gaseous phases. The system
S + L is assumed to be closed (no mass losses or gains).

2.1. Dimensionless Transport and Mass Balance Equa-
tions. Assuming 1-dimensional transport (the side effects are
negligible), a constant diffusion coefficient (D), and a constant
S-phase thickness, the dimensionless mass transport equation
is

where u ) (CS(x,t)/CS
0), x* ) (x/lS), and θ ) (tD/lS2) are,

respectively, the dimensionless concentration, position, and time
(so-called Fourier time).CS

0 is a strictly positive constant.
Consistently, the concentrationsCS andCS

0 are concentrations
per unit of volume.lS is either the whole or half thickness of
the solid material, depending on the type of contact with the L
phase, respectively, single- or double-sided.

The S-L interface is located atx* ) 1. At this interface, the
local thermodynamical equilibrium is assumed. The desorption
and sorption are assumed to be reversible in each phase and
controlled by a an equilibrium relationship similar to Henry’s
law.12,13This condition is generally well-verified for diffusants
distributed at low concentrations in dense phases, fluid phases,
or a combination of both.14 This description entails a possible
discontinuous concentration at the S-L interface. The ratio of
concentration on both sides of the interface defines the partition
coefficient between both phases:K ) (CL(x* ) 1+, t)/CS(x*
) 1-, t)), whereCL(x*, t) is the local concentration in the L
phase.

In the L phase, a combination of molecular diffusion and
convection is assumed. Diffusion is assumed to dominate close
to the S-L interface, where the fluid velocity is the lowest,
while inertia forces due to natural or forced convection are
assumed to control the dispersion of the diffusing species
elsewhere. Since only concentration gradients are expected near

the S-L interface, the mass flux at the interface is controlled
by a mass transfer coefficient,hm, with SI units in m‚s-1,
whereas a uniform concentrationKu|x*f∞ exists far from the
S-L interface. The corresponding dimensionless boundary
condition (BC) is written as a Robin BC detailed in eq 2. A
similar equation was derived by Gandek et al.15

where j* ) (lS/DCS
0) j is a dimensionless flux andj is the

interfacial mass flux density (with SI units in kg‚m-2‚s-1). B
) (RD/RH) ) (hmlS/D), the so-called mass Biot number, is the
ratio between the equivalent resistance to diffusion in the solid
phase,RD, and the mass transport resistance at the S-L interface,
RH.

Ku|x*f∞ stands for the concentration on the liquid side far
from the S-L interface. When the concentration is homogeneous
far from the S-L interface (i.e., when the volume of the
boundary layer is assumed to be negligible compared to the
volume of L), it is conveniently approximated by the concentra-
tion in the bulk, as it would be measured in L. Both descriptions
are almost equivalent when the transport property in L is much
greater than the transport property in P (the case of most liquids)
or when a mixing process (e.g., convection) occurs on the L
side. The diffusant mass balance between S and L phases
between times 0 andθ leads to the following approximation
for u|x*f∞,

where Ku|x*f∞
θ)0 is the initial concentration in the L phase,

assumed to be uniform.lL ) (SSL/VL) is the characteristic
dimension of the liquid reservoir of volumeVL and with a
surface contact area with S notedSSL. L* ) (lS/lL) is a
dimensionless length and characterizes the typical relative
distance that a diffusant initially in the S phase must cross before
migrating into the L phase. When the volume of the liquid region
subjected to to a concentration gradient is no longer negligible

(e.g., whenL* 98
>

1), u|x*f∞ must preferably be inferred by
introducing a transport equation for the liquid phase. If not, the
use of the average concentration in L, defined by eq 3, instead
of the concentration far from the interface (in the bulk), modifies
the commonly accepted definition of the mass transport coef-
ficient, hm, in eq 2. In the rest of the work, the volume of the
boundary layer is assumed to be not limiting.

Equation 2 combined with eq 3 yields the practical form of
the BC, written here as an integro-differential operator:

Two extreme cases are derived from eq 4 by assuming (i)RH

) 0 (i.e., no limiting mass transfer boundary layer), (ii)K/L*
f ∞.

Case (i) is inferred by differentiating eq 3 with time foru|x)1

) u|xf∞:

∂u
∂θ

) ∂
2u

∂x*2
(1)

j* ) - ∂u
∂x* |x*)1

) BK(u|x*)1 - u|x*f∞) (2)

u|x*f∞ ) u|x*f∞
θ)0 + 1

K
‚ 1

CS
0
‚ 1
lL

‚∫0

t
j(τ) dτ )

u|x*f∞
θ)0 + 1

K
L*∫0

θ
j*(τ) dτ (3)

j* ) - ∂u
∂x* |x*)1

)

BK(u|x*)1 - u|x*f∞
θ)0 ) - BL*∫0

θ
j*(τ) dτ (4)

∂u|x*)1

∂θ
) L*

K
j* ) - L*

K
∂u
∂x* |x*)1

(5)
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By analogy with wave propagation equations, eq 5 is known as
a reflecting boundary condition, where the amount of matter
that leaves the S-L interface modifies in return (i.e., after
accumulation or “reflection”) the mass transfer resistance at the
interface. K/L* is the equivalent dimensionless “reflecting
distance”, where the quantityK is similar to a dimensionless
“absorbing” coefficient.

Case (ii) corresponds to a very large volume of L (L* f 0)
or capacity (K f ∞) in BC defined by eq 2, that is, (∂u|x*)1/
∂θ) f 0 or the equivalent Dirichlet’s BC:

For the left-side boundary,x* ) 0, an impervious, or equiva-
lently a symmetry, BC is applied:

2.2. Formulation of Kinetic Phase Diagrams (KPDs).In
its general form, the partial differential equation (PDE), defined
by eq 1, combined with an initial condition (IC)u(x*, θ ) 0)
and BCs defined by eq 4 and 7 has no exact analytical solution.16

Particular solutions must be approximated (i) via a numerical
resolution with low- or high-order spectral techniques or (ii)
via a local decomposition of the solution as an expansion series
on a suitable basis of analytical eigenfunctions. A general
solution as an expansion series is detailed by Sagiv.3 Practically,

such calculations have severe inherent drawbacks that limit their
use in efficient nonlinear identification algorithms:

(i) They are time-consuming (specially for numerical resolu-
tion).

(ii) They require tables of eigenvalues and weighting coef-
ficients (especially for expansion series).3

(iii) They do not provide any explicit relationships between
physical parameters (e.g.,D, K, andhm), geometrical parameters
(e.g., lS, lL, andx), kinetic parameters (t), and measurements
(e.g., residual concentration in S, accumulated concentration in
L, and flux j).

(iv) They cannot be easily extended for boundary conditions
that are variable in time (especially for expansion series).

To overcome such difficulties, a general alternative formula-
tion based on polynomial approximation of the concentration
in S is described. This approach is introduced to provide an
analytical expression of the dimensionless KPD,j* ) f(uj), where
uj is the residual concentration in the S phase. The demonstration
is focused on the main relevant IC and BC for conventional
applications, which areu(x*, θ ) 0) ) 1 (e.g., uniform
distribution of the diffusant) and the general BC defined in eq
4. In addition, the expression ofj* ) f(uj) (eqs 12 and 16) is
also valid when external conditions are variable with time. The
calculated solution thus provides a suitable state equation for
algorithms that aim to control mass transport according to kinetic
or thermodynamic constraints and subjected to external pertur-
bations.

Figure 1. Parabolic approximations of internal concentration profiles foru(x*,θ ) 0) ) 1: (a) examples of approximation by a piecewise second-degree
polynomials in case of a short time S-L contact and the same residual concentrationuj; (b) details of the profile in bold line (region 1,u ) 1; region 2,
(∂2u/∂x*2) ) Cte); (c) examples of approximation by single second-degree polynomials in case of long time S-L contact and the same value ofuj; (d) idem
for the same value ofu(x* ) 1).

Table 1. Values ofr and j* R Defined in Equation 12 for Particular Conditions on ParametersK, B, and L* (Assuming Fully Developed
Parabolic Profiles)

reduced condition R j*R
uj|tf∞ )

j*R

R

K f ∞ 3 3u|x*f∞
θ)0 u|x*f∞

θ)0

K f 0 BL* BL*u|θ)0 uj|θ)0

L* f 0 BK

1 + 1
3
‚BK

BKu|x*f∞
θ)0

1 + 1
3
BK

u|x*f∞
θ)0

B f ∞ 3(1 + L*
K ) 3(L*

K
uj|θ)0 + u|x*f∞

θ)0 ) L*uj|θ)0 + Ku|x*f∞
θ)0

K + L*

B f 0 B(K + L*) B(L*uj|θ)0 + Ku|x*f∞
θ)0 ) L*uj|θ)0 + Ku|x*f∞

θ)0

K + L*

u|x*)1
(θ) ) u|x*)1

(θ)0) (6)

∂u
∂x* |x*)0

) 0 (7)
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The approach is illustrated in Figure 1. Since concerned IC
and BC lead to regular solutions with weak curvature almost
everywhere (i.e., high-order derivatives are very low), internal
profiles are approximated by assuming (∂mu/(∂x*)m) ) 0, where
m is an integerg 3. u(x*) is, therefore, approximated by a
parabolic profile. This approximation is realistic for fully
developed profiles (i.e., local mass transport occurs for all range
of x*) but is incompatible for short time, because a sharp change
in (∂2u/∂x*2) propagates from the S-L interface toward the
opposite side (or toward the geometric center of S if a symmetry
plane is assumed). This last inconsistency is overcome by
coupling the ICu(x*, θ ) 0) ) uj|θ)0 ) 1 with a parabolic
profile at a moving theoretical interface (Figure 1 parts a and
b). The position of the interface (notedxi*) defines two
regions: a region with mass transport (forx* > xi*) and a region
without mass transport (forx* e xi*). The so-defined coarse
solution is by construction continuously differentiable at the
interface, since it assumes a junction condition:

Consequently, the dynamic regime with fully developed
profiles is a prolongation of eq 12 forxi* ) 0. Other ICs and
BCs may be treated using similar approximations or by
generalizing the concept of tracking interfaces where the
Laplacian ofu (i.e., (∂2u/∂x*2)) changes significantly.

2.2.1. Parabolic Solution for Fully Developed Profiles and
Corresponding KPD Equation. The fully developed parabolic

profile is uniquely defined by boundary constraints on its first
derivatives, defined in eqs 2 and 7, at the S phase boundaries
and by a particular value:

From j* ) (∂u/∂x*) |x*)1 and the definition of the residual
concentrationuj ) ∫0

1 u(x) dx, eq 9 becomes:

The corresponding KPD equationj* ) f(uj) is inferred from
eq 4 by replacingu|x*)1 by its value calculated via eq 10 and
by defining the mass balance for the S phase from a change in
uj with time,

which yields

whereR uj ) j*D. From eq 12, the mass transfer between the S
and L phases appears to obey a linear superposition of both
first- and zero-order kinetics. The flux at the S-L interface is

Figure 2. Dimensionless KPDj* ) f(uj) for a uniform initial concentrationu(x*,θ ) 0) ) 1 andu|x*f∞
θ)0 ) 0. Initial flux and final concentration values are,

respectively,BK (the maximum ofy scale is set to min (50,BK)) and (L*/K + L*). Solid lines are calculated from the DAE defined by eqs 12 and 16. Dotted
lines are calculated from the numerical resolution of the corresponding PDE (eq 1 coupled with BC 4 and 7) via a quadratic finite element technique (see
text for details).

u|xi*
) uj|θ)0 ) 1 and

∂u
∂x* |xi*

) 0 with 0 e x
i*

< 1 (8)

u(x*) ) 1
2

∂u
∂x* |x*)1

x*2 + u|x*)0 (9)

u(x*) ) (16 - 1
2
x*2)j* + uj (10)

∫0

θ
j*(τ) dτ ) uj|θ)0 - uj (11)
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consequently decomposed between a driving fluxj*D propor-
tional to uj (proportionality coefficientR) and a resisting flux
j*R independent ofuj. As a result ofj* ) f(uj) for constantB, K,
andL*, R is the slope of the characteristic curve and-j*R is
the intercept with uj ) 0. The residual concentration at
equilibrium is obtained from the intercept withj* ) 0 and is
defined as the average state between (uj|θ)0, j* ) 0) and
(u|x*f∞

θ)0 , j* ) 0), respectively, with the weightsL* andK:

All states (uj, j*) are nonlinear functions of parametersB, K,
andL*. Table 1 summarizes typical values ofR, j*R, anduj|tf∞
for reduced cases of eq 11. The transport rate is maximal forK
f ∞ with R ) 3. The flux is then independent ofB (i.e.,
hydrodynamic conditions) and ofL* (i.e., volume effect of the
L phase). The conditionB f ∞ leads to a lower transfer rate
so that the differencej* |Kf∞ - j* |Bf∞ increases linearly with
the amount of diffusant accumulated in the L phaseL*/K(uj|θ)0

- uj). The conditionL* f 0 (infinite dilution) yields a deviation
j* |Kf∞ - j* |L*f0, which is independent ofuj (without effect due
to the diffusant accumulation in the liquid phase). This deviation
also increases significantly when the productBK decreases as
(3BK/3 + BK). From eq 6, diffusion within the S phase has no
significant effect on the overall kinetic when the ratio (j*/B)
does not depend onB. This case corresponds to the denominator
of eq 12 close to 1, that is, whenBK , 3.

2.2.2. Coarse Solution for Short Time of Contact.Accord-
ing to Figure 1 and eq 8, the KPD equation for short time of
contact is inferred from the last calculations (i) by replacingx
in eq 9 byV with V ) (x* - xi*)/(1 - xi*) (for xi* e x* e 1)
andu|V)1 ) uj|θ)0, (ii) by noting j*(V) ) (1/(1- xi*))(∂u/∂V)|V)1,
and (iii) by defininguj ) xi*uj|θ)0 + (1 - xi*)ujV with ujV being
the averaged concentration betweenxi* and 1. This leads to eq
14:

By replacingu|x*)1 ) u|V)1 in eq 4 by its value given in eq 14,
one gets

Equation 15 is a second-degree polynomial inxj*, with a
unique positive root, which yields

To be physically consistent, eq 15 must verify the inequality
xi* ) 1 - x6(uj|θ)0-uj/j*) g 0, that isj* g 6(uj|θ)0 - uj). In
other cases, the hypothesisu|V)1 ) uj|θ)0 is no longer valid and
eq 16 must be used instead.

Equation 16 varies nonlinearly withuj and parametersB, K,
andL*. By noticing thatb f 0 whenuj f uj|θ)0, a first-order
approximation inuj of the initial dynamic is inferred from a
third-order expansion series inb of eq 16. It yields

The approximation (eq 17) demonstrates thatj* is decreasing
and convex with an initial valuej* |θ)0 ) BK(uj|θ)0 - u|x*f∞

θ)0 ).
The very initial decrease inj* when uj decreases is controlled
by the first termc, which is very similar to eq 12. For larger
decreases inuj and large values of the productBK, j* exhibits
a significant curvature, which is responsible for the discrepancy
in the KPD shape between short-time contact (STC) and fully
developed parabolic (FDP) regimes. Higher-order expansions
of eq 16 demonstrate that the curvature ofj* ) f(uj) decreases
whenuj decreases down to a minimal value whenb is close to
(4/3)xc. j* is then converging to a straight line defined by

At their intersection, eqs 12 and 18 provide only an
approximation of class C0 of KPD. A continuous approximation
of class C1 is, however, achieved for small values ofBK, since
eqs 12 and 18 have close slopes at their intersection.

2.3. Typical Kinetic Phase Diagrams. 2.3.1. Comparisons
between KPD Approximations from Algebraic Differential
Equation (DAE) and Finite Element (FE) Techniques.The
DAE - (duj/dθ) ) j*(θ, uj) defined by eqs 12 and 16 was
efficiently solved foruj|θ)0 ) 1 via a quasi-constant step-size
implementation of the numerical differential formulas (NDF)
in terms of backward differences.17 The results obtained from
the DAE formulation and with a direct but more time-consuming
numerical resolution of the PDE problem are compared in Figure
2. The PDE defined by eqs 1, 4, and 7 was solved using a finite
element technique (FE) based on 50 uniformly distributed nodes
and quadratic elements. A same-time marching procedure based
on variable-order NDF formula (order between 2 and 5) was
used for both DAE and FE formulations. In the FE formulation,
the flux j* was calculated analytically from eq 8 on the basis
of the available estimations ofuj andu|x*)1.

Approximations ofj* ) f(uj) from DAE and FE formulations
yield similar results during STC and FDP regimes and, thus,
confirmed consistency of the proposed approximation. The total
computational time with the DAE was, however, reduced by a
factor between 100 and 1000 for the same code implemented
in Fortran 90.

2.3.2. Typology of KPD Shapes.In Figure 2, extreme shapes
of KPD correspond to a straight line and a hyperboliclike shape
for BK , 1 andBK . 1, respectively. Cases with intermediate
BK values are identified by an intermediate convexity during
the STC regime. ForL* , 1, intermediate cases are not
discernible. Intermediate KPD obtained forL* ) 0.01 and the
sameBK ) 1 (respectively, 0.1× 10, 1 × 1, and 10× 0.1)
thus yields similar results. For higher values ofL* , intermediate
cases are discernible from the change in either KPD slope during
FDP regime or equilibrium state.

2.3.3. Estimation of the Equilibrium State Based on KPD.
Figure 2 confirms that the final state may be easily linearly
extrapolated from the FDP regime. As a result, the equilibrium
state becomes observable (i.e., predictable) as soon as the
intercept of the KPD tangent withj* ) 0 is close enough to the
equilibrium value (L*/K + L*). By means of the reduced
concentration,X ) (uj|θ)0 - uj/uj|θ)0 - uj|θf∞), an exponential
law was fitted to estimate which minimal fractionXmin of the
whole KPD diagram was derived to predict the equilibrium state
for a particular value of the productBK:

uj|θf∞ )
L*uj|θ)0 + Ku|x*f∞

θ ) 0

K + L*
(13)

u(V) ) - x3
2
j*(uj|θ)0 - uj)V2 + uj|θ)0 (14)

j* ) b
2
[b - xb2 + 4c] + c (16)

j* ) c - xcb + b2

2
+ o(b3) (17)

j* ) BK

1 + 3
2
BK

[L*
K

uj + (1 - L*
K )uj|θ)0 - u|x*f∞

θ)0 ] (18)

Xmin ) 85%(1- e0.134BK) (19)
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Equation 19 illustrates that∼10% of the whole kinetic must be
observed to estimate accurately the equilibrium state ifBK )
1, whereas more than 70% and 85% must be observed for,
respectively,BK ) 10 andBK . 1.

The previous strategy may be extended to variable external
conditions with time (dilution effect, variation in stirring, and
change of solvent) by vertically translating the current last
“observed” state from (uj, j1* |uj) to (uj, j2* |uj), where numbers 1
and 2 are related to the KPDs corresponding to the old and
new conditions, respectively. The new “possible” equilibrium
is, therefore, approximated from the linear prolongation of the
new state with the previous slope (onlyjR* is updated) or, more
accurately, with the new slope when it is available or known
(both R and jR* are updated).

2.4. Comments on the Feasibility of the Simultaneous
Estimation of D, hm, and K from KPD Abacus and Experi-
mental Data.KPD shapes suggested that the transport properties
(D andhm) and the partition coefficient (K) cannot be estimated
at the same time with the same accuracy from an experimental
data set (uj, jS ) (D/lS)j*), where jS is a scaled flux in m‚s-1

(flux related to an initial concentration of 1). This subsection
examines theoretically how the extraction of different informa-
tion from STC and FDP can improve the well-poseness of the
identification of the three properties.

2.4.1. Strategy Based on the Combination of Information
Available during STC and FDP Regimes.A rough estimation
of the dependence between parameters is provided from the
analytical expression of the most typical and independent
characteristics of the scaled KPD for both the STC and FDP
regimes. For the three unknown parameters, we choose three
characteristics: the initial state (1,jS|θ)0), an estimate of the
KPD curvatureâuj|STC(b2|uj|STC

S/2) for a particular state during the
STC regime (uj|STC, j|STC), and finally the equilibrium state
(uj|θf∞, 0). These characteristics estimated from eqs 17 and 12
lead to the following system:

It follows that the unique solution is

where, in the case of incomplete data (nonobserved equilibrium),
uj|θf∞ may be estimated from theR value (eq 12) and a particular
state during the FDP regime (uj|FDP, j* |FDP):

Consequently, an estimation of the initial flux (or that during
the STC regime) is required for both transport properties,hm

and D. Besides, the observation of the kinetic must be long
enough and with appropriate sampling to make possible the
estimation of the KPD curvature with enough accuracy. In the
presence of large unscaled time data, a poor estimation may
lead to unreliable transport properties. The relative error inD
is proportional to the product of relative errors injS|θ)0 and
b|ju|STC, whereas the relative errors inhm and K vary like
1/(uj|θf∞)3. Thus, for a coupled estimation of the three param-
eters, the quality of the estimation ofD depends mainly on the
dynamics during STC regime, whereas bothhm andK are very
sensitive to the quality of the prediction of the equilibrium state
derived from data available during the FDP regime.

An accurate estimation of the dimensionlessB number
requires information from both the STC and FDP regimes:

2.4.2. Strategies Based Only on the Information Available
during the FDP Regime. Identification strategies based only
on the FDP regime do not provide enough information to
estimate all three parameters. This impossibility is confirmed
by KPDs that are completely determined by two parameters or
particular states (see eq 12). Nevertheless, this difficulty may
be overcome if different achievements of scaledRS ) 3(K +
L*)(3hD/3D + hlSK) are available for different values ofL*
and/orlS. Different slopes as well as different equilibrium states
are then achieved and make possible the theoretical calculation
of the three properties.

3. Materials and Methods

3.1. Desorption Experiments.In unsteady mass transfer
conditions, the experimental determination of KPD (j ) f(CL))
is difficult since j cannot be measured directly and indepen-
dently. It is conventionally derived from the differentiation of
CL with time (see Section 3.1.3). The accuracy ofj estimates
depends strongly on the sampling rate and on the noise level in
CL measurements.

Desorption kinetics with relative high frequency were achieved
by monitoring the concentration rise of a UV tracer, 2,5′-
dimethoxyacetophenone (DMA), within a stirred suspension of
LDPE (low-density polyethylene) particles. DMA is a relatively
fast-diffusing substance, with a maximum absorbance at 330
nm, and is sparingly soluble in polar solvents (logP ≈ 2.1).

3.1.1. Solid-Phase Preparation.LPDE resin containing
DMA at 0.6% (w/w) was prepared by initiallly soaking virgin
LDPE powder (particle size 300µm) into a methanol solution
with DMA and by subsequently vaporizing the solvent under
vacuum. Dyed powder was extruded the same day, than soaked
in a four-temperature-zone monoscrew extruder (model Scamia
RHED 20.11.D, France; set zone temperatures: 125, 130, 135,
and 135°C) and laminated to yield a 30 mm× 0.5 mm ribbon.
Died ribbon was stored at-18 °C before use. The ribbon was
finally transversally cut with a microtome so as to provide
particles with the following sizes: 2lS × l1 ) 0.5 mm and 2lS
× l2 ) 20 ( 5 mm, where 2lS ranged between 3 and 100µm.
The uniformity of cut and tracer concentration was controlled
from microscopic observations (UV charge-coupled device
(CCD) camera, model Hamatsu-C4742-95812E5, coupled with
a UV microscope, model Karl Zeiss -MPM800MCS) at constant
transmitting light wavelengths, respectively, 420 and 330 nm.

B ∝ 1
L*

b2|uj|STC

S

jS|θ)0

‚
1 - uj|θf∞

uj|θf∞
(23)

{jS|θ)0 ) DBK
lS

) hK

b2|uj|STC

S ) âuj|STC

DB2K2

lS
∝ lS

(hK)2

D

uj|θf∞ ) L*
K + L*

(20)

{D ∝ lS
(j|θ)0)

2

b2|uj|STC

S

h ∝ 1
L*

jS|θ)0

1 - uj|θf∞

uj|θf∞

K ∝ L*
1 - uj|θf∞

uj|θf∞

(21)

uj|θf∞ )
L* j* |FDP[3âuj|STC

jS|θ)0 + b2|uj|STC

S ] - 3b2|uj|STC

S uj|FDP

L* j* |FDP[3âuj|STC
jS|θ)0 + b2|uj|STC

S ] - 3b2|uj|STC

S

(22)

BATCH: ie11a06 USER: ckt69 DIV: @xyv04/data1/CLS_pj/GRP_ie/JOB_i23/DIV_ie060347w DATE: September 26, 2006

F

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481



Experiments were set up with thin particles to ensure (i) one-
dimensional mass transfer (i.e., side effects were assumed to
be negligible sincel1/lS g 10) and (ii) lowB values that ranged
between 1 and 103. The latter conditions ensured that both
diffusion and external resistances were acting simultaneously
on desorption.

3.1.2. Liquid-Phase Preparation.Ethanol and methanol
(99% purity) were chosen as L phase to make possible the
sedimentation of particles and to provide differentK values.

3.1.3. Desorption Cell and On-line CL Measurement.The
desorption step was performed at 20°C in quartz 3 mL cells
located inside a thermostatic modified spectrophotometer (model
Shimadzu-UV2401 PC), including a miniaturized immersed
magnetic stirrer (stirring velocity 200 rpm). The cell position
was adjusted so that the beam crossed the suspension at∼10
mm from the cell bottom and below a possible vortex at the
air-liquid interface. The reference was set up from an identical
cell filled with the liquid-phase alone but not stirred.

Figure 3. (a,c,e) Experimental desorption kinetics, (b,d,f) corresponding KPDjS ) f(uj). The conditions were as follows: (a,b) reference conditions (2lS )
50 µm particles in ethanol,L* ) 7.2× 10-3) with three repetitions noted{ri}i)1...3; (c,d) 2lS ) 50 µm in ethanol (noted EtOH) and methanol (noted MetOH),
respectively; (e,f) 2lS ) {3,10,25,50,100} µm in ethanol. Experimental and fitted data are plotted with symbols and lines, respectively.

BATCH: ie11a06 USER: ckt69 DIV: @xyv04/data1/CLS_pj/GRP_ie/JOB_i23/DIV_ie060347w DATE: September 26, 2006

G

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499



Absorption intensities were continuously acquired with an
acquisition rate up to 20 Hz. The spectrum was scanned between
280 and 480 nm with an acquisition period varying between
10 and 40 s. After numerical treatment, only the maximal
intensity of each spectrum (at 330 nm) was used to assess the
concentration in DMA. The numerical treatment consisted of
digital filtering (noncausal digital filter with cutting-off fre-
quency of 0.5 Hz with 60 db attenuation) and of subsequently
subtracting the baseline generated by turbidity (estimated
between 400 and 460 nm). It was verified with nondyed LDPE
particles in suspension in reference DMA solutions that either
maximum values at 330 nm or cumulative values between 280
and 400 nm of corrected spectra provided similar results and
were linearly correlated to reference DMA concentration values.
In addition, it was established that the calibration curve was
not sensitive to the stirring velocity in the range 0-400 rpm. It
is worth noticing that our procedure measured only the DMA
absorbance in the solution and not that within the solid particles.

3.2. Numerical Procedure for the Assessment of KPD
Features (jS, djS/duj) from CL Measurements. 3.2.1. Macro-
scopic Mass Balance in Diffusing Substance.Experimental
KPD were expressed asjS ) f(uj) and were calculated by
assuming no DMA loss between solid and liquid phases:

3.2.2. Continuous Estimations of First and Second Time
Derivatives of CL. The direct application of eq 24 requires one
to approximate first and second derivatives (dCL/dt) and (d2CL/
dt2) with sufficient accuracy whenCL is subjected to noise and
includes possible changes in acquisition rate. To not spread
experimental errors between the STC and FDP regimes,
nondeterministic local and differentiable approximates ofCL(t)
were preferred to a global continuous fitting function. Such
methodologies provide an extension to classical regression
techniques by combining both filtering techniques (weighting
kernels) and maximum likelihood strategies via the introduction
of constraints such as smoothness or a priori knowledge.18,19

For a data set{ti, CL|ti}i)1...M including M samples, each
{CL|ti}i)1...M and its derivatives are locally approximated from
a local polynomial regressor of degreek, noted{ψ̃l,i}l)0...k,i)1...M.
For each sampling timeti, polynomial coefficientsψ•,i are
defined in the local normalized base, 1,t̃i, ..., t̃ t̃i

k, where (t̃i ) (t
- ti)/τ). τ is a positive constant defined in eq 26. The whole
approximation problem is assembled asM Tikhonov regularized
least-squares problems20 and solved usingM singular-value
decompositions as described by Hansen:21

where{Kjl ,i}1ejeM,0elek,1eieM are the local Vandermonde ma-
trices defined byt̃ t̃j

l , {Djl,i
m}M,0elek,1eieM are the corresponding

mth-order differentiation matrices, (l!/(l - m)!) t̃il-m, andê2 is a

positive scalar that controls the tradeoff between the closeness
to the data and the smoothness.ωij is a symmetric (i.e.,
noncausal) weighting kernel used for low bypass filtering data
points by decreasing their influence in each local interpolation
sequence according to their distance fromti. Moving overlapping
windowing was applied using a tricube kernel with support on
[-1, 1],

where τ is the so-called bandwidth, which restricts only the
observations in the interval [ti - τ, ti + τ] to be used for the
identification ofψ•,i. As a result,{ψ̃•,i}i)1...M are envisioned as
the best local polynomial approximates of degreek with the
smallestmth derivative at timeti (i.e., almost equivalent to a
smoothing spline of order 2m with a break at every data site).

Because of the high regularity of the true solutionCL, the
best results were obtained by choosingk ) 4, m ) 3, andτ )
1500 s and by assuming symmetric boundary conditions at both
ends of the measured signal. Finally,jS|ti and dj

S/duj|ti were
analytically calculated from{ψ̃•,i}i)1...M derivatives at timeti
using eq 24. For the same trial, the uncertainty at timeti in
each local regressor value and its derivatives were estimated
from standard deviations related toCL|ti and jS|ti, noted,
respectively,σ(ti)

CL and σ(ti)
j , and derived from the diagonal

elements of the covariance matrix of the local regularized least-
squares problem defined by eq 28. Each covariance matrix was
calculated by means of an orthogonal-triangular decomposition
(QR) of the local regression operatorAi defined by eq 27 and
a singular-value decomposition of the so-computed matrixRi.

whereWjj ,i ) ωij andWjl ,i ) 0 for j * l.
A similar procedure was used to assess the standard deviation

related to (dj/dCL)|ti, notedσ(ti)
dj/dCL, from a local approximation

of the KPD {CL|ti,ĵ|ti} based on a bivariate weighting kernel,
which takes into account errors on both variables. The regu-
larization parameterê2 was chosen to globally minimize the
confidence intervals on first derivatives.

3.3. Generalized Least-Squares Criterion to Identifyp )
[D, K, hm]′. Transport properties were simultaneously identified
by minimizing a generalized least-squares criterion incorporating
the main features of KPD,

whered ) 1, 2, 3 is the dimension of the kinetic approximation
space and{λi}i)1...d are coefficients that verify∑i)1

d λi ) 1 and
balance the deviations in magnitude of the distance function
according to the source of information available at time
{ti}i)1...M. X̂ and σX denote predicted values ofX from the

{uj(t) ) 1 - 1
L*

‚
CL(t)

CP(t ) 0)

jS(t) ) 1
CP(t ) 0)

‚1
lL

dCL(t)

dt

djS

duj
|(t) ) - 1

CP(t ) 0)
‚L*

lL
2
‚ 1

jS(t)

d2CL(t)

dt2

(24)

ψ̃•,i ) min
ψ•,i

∑
j)1

M

{[ωij‚(CL|ti - ∑
l)0

k

Kjl ,i‚ψl,i)]
2 +

ê2‚(∑
l)0

k

Djl,i
m‚ψl,i)

2} for all i ) 1...M (25)

ωij ) [max(1 - |tj - ti
τ |3,0)]3

(26)

Ai ) [W••,i K••,i
úD••,i ] ) Qi Ri (27)

ø2(p,d,M) )

d∑
i)1

M {λ1[CL|i - ĈL(ti,p)

σCL
|i ]2

+ λ2[jS|i - ĵS(ti,p)

σj
S|i ]2

+

λ3[djS

duj
|i -

dĵS(ti,p)

dû

σdjS/duj|i ]2} + P(p,d) (28)
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physical model (see Section 2.1) and estimates of error inX,
respectively.P(p,d) is a smooth and continuous penalty function
based on Heaviside distributions, which gives a large value when
physical infeasibility is encountered and gives 0 elsewhere.
Classical identification is reduced to the particular cased ) 1
andλ2 ) λ3 ) 0.

Because of the high nonlinearity of the distance function and
efficiency, eq 28 was minimized using a downhill simplex
method that did not use the gradient information ofø2(p,d,M).
After an initial raw exploration, optimization proceeded by
successive contractions toward a minimump̂ that may be a local
minimum and possibly different of the true one ifø2(p,d,M) is
biased.

The property ofp̂ to be a global minimum of eq 28 was tested
by mapping the values of on aø2(p,d,M) 20 × 20 × 20 mesh
contracted around the identifiedp̂ value. Since errors in
parameter values of several magnitude orders might be expected,
a logarithmic scale was used. A contour of constant∆ø2 was
used as the boundary of the identification confidence region.
As prescribed by Press et al.,22 a Monte Carlo sampling was
finally applied to determine which contours corresponded to
80%, 90%, and 95% joint confidence regions. The determinant
of the formal Fisher information matrixF ) J′J at the minimum
p̂ was used as a qualitative interpretation of the variance ofp̂,
whereJ was the Jacobian of the model.

4. Experimental Section

Raw spectra of suspensions presented disrupted and biased
signals including up to 40% of noise. Filtering and bias
correction removed outliers and reduced errors below 10%. The
absorption at the wavelength of 330 nm was used to estimate
CL and subsequentlyuj. Experimental kinetics, uj(t), and KPD, jS

) f(uj), are synthesized in Figure 3. Identified values and 95%
confidence intervals ofD, K, h, and B, identified from data

plotted in Figure 3 are summarized in Table 2. It is emphasized
that jS is expressed in m‚s-1 and is equivalent to the reciprocal
of an overall mass transfer resistance between the solid and
liquid phases.

4.1. Typical Kinetics and KPD for Reference Conditions.
Parts a and b of Figure 3 present results obtained for reference
desorption conditions (2lS ) 50 µm, in ethanol,L* ) 7.2 ×
10-3). Desorption kinetics were acquired in triplicates (repeti-
tions are noted{ri}i)1..3) until equilibrium for repetitionsr1 and
r2 and for a desorption level of 90% for repetitionr3. The
fluctuations ofuj(t) at equilibrium showed a random noise level
up to 10% of the observed variation scale. Errors between
repetitions had the same order of magnitude and confirmed the
good repeatability of both the sampling procedure and the
acquisition one. The three experimental kinetics were, therefore,
similarly fitted with a d ) 1 model (Figure 3a). The main
difference was observed for ther3 kinetic that led to different
asymptote.

Experimental and fitted KPD (d ) 2 criterion) also exhibited
good repeatability. 95% confidence intervals assessed for all
repetitions and extracted from the covariance matrix of local
regressors were similar and about 5% and 15% of the full
variation scale foruj andjS, respectively. Fitted KPD decreased
monotonically with a low curvature, whereas experimental KPD
evolved as wavy decaying trajectory with an increasing fre-
quency whenuj was decreasing. The deformation of the time-
frequency domain in KPD space was responsible of such an
apparent acceleration of oscillations.

For the same starting guess and identification strategy, all
repetitions yielded similar values forD, K, hm, andB (Table
2). Large differences inD andB values up to 2 decades were,
however, observed betweend ) 1 andd ) 2 criteria. Criteria
based ond ) 3 gave similar results and are not shown. The
sensitivity analysis confirmed that the confidence intervals were

Table 2. Estimated Values of ParametersD, K, h, and B (Row a ) 2.5th Percentile, Row b) Median Value, Row c ) 97.5th Percentile)
According to Both Identification Procedures: d ) 1 or d ) 2

parameter D × 1013 (m2‚s-1) K × 103 h × 106 (m‚s-1) Bi

criterion d ) 1 d ) 2 d ) 1 d ) 2 d ) 1 d ) 2 d ) 1 d ) 2

r1 a 0.16 1.3 2.6 2.5 5.4 3.3 290 110
b 0.41 1.8 2.6 2.6 6.3 3.5 1.9× 103 240
c 2.3 3.9 2.7 2.6 93 4.3 7.3× 104 410

r2 a 0.17 1.1 2.6 2.4 4.9 4.3 430 256
b 0.29 1.5 2.6 2.4 5.6 4.8 2.4× 103 650
c 1.4 2.1 2.7 2.5 74 5.3 5.4× 104 770

r3 a 0.33 0.84 2.1 2.2 5.8 4.7 300 450
b 0.48 0.96 3.1 2.4 6.2 5 2.3× 103 630
c 2.4 1.3 3.9 2.6 78 5.2 5.4× 104 950

EtOH′ a 0.14 1.1 2.6 2.4 4.4 3.4 240 160
b 0.18 1.6 2.7 2.6 11 3.8 7.6× 103 300
c 2.3 2.7 2.7 2.8 170 4.2 1.5× 105 480

MetOH a 0.77 1.8 15 12 2.8 1.4 290 46
b 0.9 2.4 15 14 3.8 1.6 530 83
c 1.2 3.8 15 16 56 1.9 9.1× 103 130

3 µm a 0.043 4.1 2.6 2.2 3.8 2.8 100 5
b 0.069 5.7 2.6 2.4 5.1 3 1.1× 102 8
c 0.55 7.8 2.6 2.7 66 3.2 2.3× 104 12

10 µm′ a 0.16 2.6 2.6 2.4 4.6 1.9 100 7
b 0.2 6.1 2.6 2.6 6.4 2 1.6× 103 16
c 2.4 14 2.6 2.9 63 2.6 1.9× 104 50

25 µm a 0.63 0.79 2.6 2.4 4 3.1 82 140
b 0.7 15 2.6 2.5 5.4 3.3 964 280
c 6.1 2.7 2.6 2.6 61 3.5 1.2× 104 550

50 µm a 1.7 0.63 2.6 2.3 3.9 3 305 210
b 2.4 1.5 2.6 2.4 4.2 3.9 438 650
c 3.2 3.6 2.6 2.5 46 5.0 6.8× 104 2.0× 103

100µm a 0.82 1.7 2.6 2.5 3.2 2 84 420
b 1.02 3 2.6 2.6 3.3 3.4 1.7× 103 850
c 19 2.4 2.6 2.6 35 5.3 2.1× 104 1.6× 103
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greater ford ) 1 (significantly above 1 decade) than ford ) 2
(less than a factor 3). In addition, it was verified that estimated
values withd ) 1 were not centered within the confidence
interval and corresponded mainly to local minimums. These
results confirmed experimentally that both transport properties
D and hm cannot be inferred independently from raw kinetic
data. The accuracy was besides dramatically increased with an
approximation space taken into the mass flux (d g 2).

As expected, similarK values were derived with high
confidence for all testedd values when the equilibrium state
was observed during the experiment (repetitionsr1 and r2).
When it was not observed,d ) 1 criterion gave only local
minimums ranged with a confidence interval up to a factor 2
(repetition r3). Additionally, removing the last points of the
kinetic r3 (such thatu > 0.7) increased the previous uncertainty
by a factor 2. This effect was not observed ford g 2 criteria.

4.2.K Effect. Parts c and d of Figure 3 present the desorption
kinetic and KPD when ethanol is replaced by methanol as L
phase for reference desorption conditions (for 0.4< L*/K < 4
according to Table 1). The desorption rate in methanol was much

higher than that in ethanol. Kinetics and KPD exhibited similar
shapes, respectively. KPDs were, in particular, almost homo-
thetic when a FDP regime, identified by a linear section, was
achieved in the material. According to eq 12, this condition
corresponded toBK , 3, which entails that the KPD slope was
mainly controlled by the value ofhm in both L phases.

The criteriond ) 1 failed to identify a similarD value for
both conditions (Table 2). By contrast, the homothetic curvature
in KPD shape during STC made it possible to determine a very
similar D value. The existence of an STC regime was verified
by noticing that the linear extrapolation of the FDP regime led
to a different initial state (foruj|tf0) with a lower desorption
rate jS|tf0. Besides, the final equilibrium state was completely
determined starting from the transition state between the FDP
and STC regimes (before 40% of the whole migration occurred).

4.3. lS Effect. Parts e and f of Figure 3 plot the effect of
thickness for 2lS varying from 3 to 100µm in reference
desorption conditions. As expected, desorption kinetics were
drastically modified when the thickness was changed. By
comparison, the modifications in KPD were less noticeable. For

Figure 4. Projected joint confidence regions (PJCR) derived from results depicted in Figure 3 parts a and b (repetitionr3). PJCR were based on criteria
calculated for (a,b,c)d ) 1 and (d,e,f)d ) 2. Gray level values represent min(∆ø2,8). The gradient of∆ø2 is superimposed as quiver plots. PJCR based on
an approximation of the local information matrix is also indicated. The axes of projections are plotted in dotted lines and correspond to identified values of
D, K, andhm. The deviation between the identified minimum and the intersection of the projection axis assesses the bias due to the identification procedure.
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2lS < 25µm, KPD were linear in shape with the same maximum
normalized flux (jS|tf0) of ∼0.9 m‚s-1. For 2lS > 25 µm, KPD
exhibited a significant curvature and showed a maximum
normalized flux (jS|tf0) that decreased whenlS increased. These
simple observations are interpreted as the external mass transfer
resistance controls, mainly the desorption kinetic, for low
thicknesses, whereas a combination of both internal and external
resistances act on desorption when the thickness is higher. The
increase in the value ofB when the thickness increased
confirmed this interpretation of KPD.

Transport properties based ond ) 1 were poorly identified;
their quality depended strongly on the thickness, on the trueB
value in fact. However, the errors between both propertiesD
andhm were highly correlated during the identification so that
any reliable determination of the trueB was not possible (Table
2).

By contrast,D, hm, andB results based ond ) 2 were more
robustly identified. The uncertainty and bias inhm andD were
reliably distinguished. Thus, ad g 2 methodology yielded low
overestimatedD values for low thicknesses, whereas thed ) 1
methodology underestimated systematically the trueD value
by a factor up to 20 in similar conditions.

4.4. Typical Projected Confidence Regions.Typical pro-
jected confidence regions (PJCR) are compared in Figure 4 for
bothd ) 1 andd ) 2 methods applied to the data setr3 (Figure
4 parts a and b). Both methods led to highly different topologies,
an extruded “L” shape oriented along thehm dimension and an
“I” shape oriented along theD dimension ford ) 1 andd ) 2,
respectively.

Ford ) 1, the orientation of the confidence ellipsoid confirms
that errors in estimatedD and hm were strongly correlated
(Figure 4b). Furthermore, the low convexity of the criterion at
its minimum showed that the upper limits ofD and hm were
poorly bounded. This behavior explained why individual
confidence intervals of both transport properties where non-
centered on the found minimum value.

Such drawbacks were not observed with ad g 2 criterion
(Figures 4 parts d, e, and f).d ) 2 yielded PJCR with deep
valleys with almost isotropic properties at the minimum. The
number of feasible situations was drastically decreased. The
increase in well-poseness (optimality) of the least-squares
problem was estimated by the trace and determinant of the
information matrix. The variance of parameters was respectively
decreased six times (A-optimality property), and the volume of
the confidence ellipsoid of the regression estimates was
decreased by a factor 5× 103 (D-optimality property).

5. Numerical Experiments

The effects of desorption level defined bys ) [1 - minθ-
(uj|θ)]/(1 - uj|θf∞) and ofK, L*, and B values on both bias and
confidence onD, hm, K parameters in controlled conditions of
noise and sampling were assessed more systematically by
numerical experiments. The maximum ratiolS2/D was set to 4
× 105 s (4.6 days) to enclose the conditions experimentally
explored. Kinetics were based on 20 simulated concentration
data points that were sampled (i) at constant frequency (uniform
sampling in time) or (ii) so that the variation in concentration
between consecutive data points was constant (uniform sampling
in concentration). Both situations corresponded to two extreme
cases for the repartition of data in KPD. All data were blurred
with 5% white noise and truncated according to min(1,u).
Dimensionless KPD,j* ) f(uj), were reconstructed as previously
from eqs 24 and 25.

5.1. Typical Effect of the Desorption Level onD, K, and
hm Estimations from Kinetic Data and KPD. The effect ofs
on fitted desorption kinetics and KPD is illustrated in Figure 5
for B ) 1000, K ) 0.1, L* ) 0.01, ands ) 50%. Uniform
sampling in concentration increased the relative weight of initial
kinetic data, whereas uniform sampling in time increased the
relative weight of data associated to higher desorption rates.
Both sampling strategies led apparently to similar fitted kinetics
and KPD. However, thed ) 1 criterion was not able to
extrapolate the “real” desorption kinetic beyonds ) 50%
without introducing a positive bias. Such an error was respon-
sible for a false prediction of the final equilibrium (almost 0
instead of 0.1) (Figure 5 parts a and b). Despite errors in both
u andj* values,d g 2 methods led to a better extrapolation of
true results fors > 50%. The extrapolated equilibrium value
ranged between 0.09 and 0.12 and was furthermore in very good
agreement with the true value (Figure 5 parts c and d).

Capabilities of bothd ) 1 andd ) 2 criteria to estimateD,
K, andhm properties from previous data uniformly sampled in
time are compared in Figure 6 from PJCR. Similar results were
obtained with data uniformly sampled in concentration. Thed
) 1 method generated a low convex functional with many local
minimums and a large confidence ellipsoid that was stretched
alonghm andD directions. As a result, only the parameterD
could be accurately estimated from kinetic information. By
contrast,d ) 2 generated a hilly functional where the optimal
value laid in the bottom of a narrow valley opened toward low
D values. Volume of confidence ellipsoid was 5× 105 lower
with d ) 2 and stretched along the axis (D, - hm). AlthoughK
andhm estimations were highly linear dependent, simultaneous
estimations ofD, K, andhm parameters were possible because
their respective confidence intervals close to the optimal value
were small (Figure 6 parts d and e).

5.2. Effect ofB and s Level on Bias and Confidence onD,
K, and hm Estimations.The previous analysis was generalized
for a wide range of simulated conditions:B ) [10-1, 1, 10,
102, 103, 104] × K ) [10-2, 10-1, 5 × 10-1, 1, 2, 5]× L* )
[10-3, 5 × 10-3, 10-2, 5 × 10-2, 10-1] × s ) [30, 40, 50, 60,

Figure 5. Simulated dimensionless desorption kinetics (B ) 1000,K )
0.1,L* ) 0.01, ands ) 50%): (a,b) raw kinetics and (c,d) corresponding
KPD. Simulated data were based on 20 concentration data points including
5% of white noise. Data were as follows: (a,c) equisampled in time and
(b,d) equisampled in concentration. Simulated data are plotted with symbols;
the true and fitted curves are respectively plotted in dotted and solid lines.
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70, 80, 100] and for both strategies of sampling. SinceB was
the main explicative factor, relative bias and confidence intervals
inferred from different (K, L*) values were averaged and
compared withB only. Results are plotted in Figures 7 and 8
for strategies based on uniform sampling in time and in
concentration, respectively. Sinced ) 2 andd ) 3 criteria had
very similar efficiency, only the results ford ) 2 are given.

For almost all of the tested conditions, approximations of
parametersD, K, andhm based ond ) 1 criteria were poor and
highly sensitive tos. The estimation ofD was achievable (with
a relative bias∼1 unit) for all testeds values only whenB was
>100. Accurate estimations ofhm, K, andB requireds values
higher>70%. These results confirmed that noisy raw kinetic
data, which did not include the equilibrium state, were not
sufficient for a simultaneous estimation ofD, K, and hm

parameters.
d ) 2 criteria significantly improved the previous method

by making possible low biased and confident estimations ofD,
K, andhm for B g 10 andsvalues as low as 30%. Both sampling

strategies led to similar estimates of tested parameters. Only,
the estimation ofB was slightly improved with a uniform
sampling in time by allowing an estimation down toB ) 1 for
s > 50%. It is emphasized that, when no accurate estimation of
any parametersD, hm, or K was reachable, identification
strategies based ond g 2 generally led to overestimation of
the true value of each parameter. By contrast,d ) 1 strategy
could generate either underestimated or overestimatedD values.

6. Conclusions and Prospects

A robust estimation strategy was proposed to simultaneously
identify three propertiesp ) [D, K, hm]′ that control desorption
kinetics (or, equivalently, sorption kinetics) under two relevant
constraints constraints: low Biot values and incomplete kinetics.
The feasibility is demonstrated via a new approximation of 1D
diffusion equation coupled with a Robin boundary condition.
The approximating differential algebraic equation offers both
(i) a very efficient computational alternative to other analytic

Figure 6. Projected joint confidence regions (PJCR), respectively, to simulated results of Figure 5. PJCR were based on the following: (a,b,c)d ) 1 and
(d,e,f)d ) 2 criteria. Gray level values represent min(∆ø2, 8). The gradient of∆ø2 is superimposed as quiver plots. PJCR based on an approximation of the
local information matrix is also indicated. The axes of projections are plotted in dotted lines and correspond to identified values ofD, K, andh. The deviation
between the identified minimum and the intersection of the projection axis assesses the bias due to the identification procedure.
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Figure 7. Relative bias and 95% confidence intervals on parametersD, K, hm, andB estimated from 20 concentration data points equisampled in time and
including 5% of noise. The estimations were based on the following: (a)d ) 1 and (b)d ) 2 criteria. Data were simulated for differentB values, ands
values ranged between 30% and 100%. Each depicted point was averaged over 30 simulations corresponding to all combinations of parametersK ) [10-2,
10-1, 5 × 10-1, 1, 2, 5]× L* ) [10-3, 5 × 10-3, 10-2, 5 × 10-2, 10-1].
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Figure 8. Relative bias and 95% confidence intervals on parametersD, K, hm, andB estimated from 20 concentration data points equisampled in concentration
and including 5% of noise. The estimations were based on the following: (a)d ) 1 and (b)d ) 2 criteria. Data were simulated for differentB values, and
s values ranged between 30% and 100%. Each depicted point was averaged over 30 simulations corresponding to all combinations of parametersK ) [10-2,
10-1, 5 × 10-1, 1, 2, 5]× L* ) [10-3, 5 × 10-3, 10-2, 5 × 10-2, 10-1].
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or numeric approximations and (ii) explicit relationships between
physical parameters and desorption rates. These features were
combined within a generalized least-squares criterion that
extends classification techniques by including important physical
features such as the scaled mass flux at the solid-fluid interface
(jS) and its variation with the concentration.

Since jS values were derived from concentration measure-
ments, errors injS and concentrations were expected to be
partially correlated. The performances according to the number
of distance contributions (d ) 1, 2, 3) were analyzed in terms
of bias and confidence on both experimental and simulated data.
d ) 1 strategies led to unreliable estimates ofK and hm for
desorption levels< 70%. Besides, it is emphasized thatd ) 1
did not make possible accurate estimations of the mass Biot
number. Criteria based ond g 2 drastically enhanced the
accuracy and stability of identification procedure with typical
confidence ellipsoid volumes that were reduced by a factor
varying between 105 and 107. These improvements drew the
conclusion that the simultaneous identification ofD, K, andhm

values andB may be feasible and stable from scattered truncated
kinetics forB g 1 and a wide range of migration conditions:
10-2 e K e 5, 10-3 e L* e 10-1, and desorption levels as
low as 30%.

The proposedd g 2 approach was mainly limited by the
information available at the beginning of the migration process
when the migration dynamics was the fastest (STC regime).
On the basis of kinetics, including 20 points and 5% of white
noise, it was, however, shown that the proposed strategy of
signal reconstruction of the primitive, first, and second deriva-
tives of the concentration kinetic was almost insensitive to the
type of sampling: uniform sampling in either time or concentra-
tion. It must be emphasized that the proposed current approach
might be used for any migration kinetics to estimateD, K, and
hm parameters or dimensionless quantities such asBK, B, and
K/L* when the cumulative amount of diffusant between both
solid and liquid phases remains constant (i.e., without any further
mass transfer or reactions). Further works appear desirable to
extend results in conditions where boundary conditions vary
arbitrarily with time.

Nomenclature

Ai ) local regularized regression operator defined in eq 27
B ) mass Biot number
b ) parameter in eq 16
CL ) bulk concentration in the liquid phase (kg‚m-3)
CS ) local concentration in the solid phase (kg‚m-3)

CS ) residual concentration in the solid phase (kg‚m-3)
CS

0 ) initial/typical concentration in the solid phase (kg‚m-3)
c ) parameter in eq 16
d ) dimension of the approximation space in eq 28
D ) diffusion coefficient (m2‚s-1)
Djl ,i

m ) mth differentiation operator corresponding toKjl ,i (see
eq 25)

F ) information matrix
K ) partition coefficient ([kg‚mL

-3]‚[kg‚mP
-3]-1)

Kjl ,i ) collocation matrix corresponding to the ith data (see eq
25)

h ) filter bandwidth (s)
hm ) mass transfer coefficient at the S-L interface (m‚s-1)
J ) Jacobian of the model
j ) mass flux density at the interface (kg‚m-2‚s-1)
j* ) dimensionless mass flux
jD
/ ) equivalent driving flux density in eq 12 (kg‚m-2‚s-1)

jR
/ ) equivalent resisting flux density in eq 12 (kg‚m-2‚s-1)

jS ) scaled flux defined in eq 24 (m‚s-1)
lL ) characteristic length scale of the liquid phase (m)
lS ) characteristic length scale of the solid phase (m)
L* ) dilution factor
M ) number of independent data in a data set
m ) differentiation order
p ) vector of unknown parameters
p̂ ) estimate ofp
RD ) equivalent resistance to diffusion in the P phase (s‚m-1)
RH ) equivalent interfacial resistance in the L phase (s‚m-1)
SSL ) surface area of the solid-liquid interface (m2)
s ) desorption level
t ) time (s)
u ) Brownian density or equivalently dimensionless concentra-

tion in the solid phase
uj ) dimensionless residual concentration in the solid phase
VL ) volume of the liquid phase (m3)
V ) reduced coordinate defined in Section 2.2.2
X ) reduced concentration defined in Section 2.3.3
Xmin ) minimal X value defined in eq 19
x ) spatial coordinate (m)
x* ) dimensionless coordinate
xi* ) dimensionless position of the interface defined in Section

2.2.2
Wjl ,i ) weighting tensor in eq 32

Greek Letters

R ) proportionality coefficient defined in eq 12
RS ) scaled value ofR used in Section 2.4.2
â ) KPD curvature
λi ) coefficients in eq 28
θ ) dimensionless Fourier time
ø2 ) distance function
ø2* ) least-squares criterion
σX ) standard deviation of the quantityX (same unit asX)
ωij ) weighting kernel in eq 26
ê2 ) regularization parameter in eq 25

AbbreViations

BC ) boundary condition
FDP ) fully developed parabolic regime
KPD ) kinetic phase diagram
IC ) initial condition
ODE ) ordinary differential equation
PJCR) projected confidence region
PDE ) partial differential equation
STC ) short-time contact
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