Identification of Diffusion Transport Properties from Desorption/Sorption Kinetics: An Analysis Based on a New Approximation of Fick Equation during Solid–Liquid Contact

Olivier Vitrac*† and Murielle Hayert‡
UMR Fractionnement des Agro-Ressources et Emballage, INRA 614, Moulin de la Housse, 51687 Reims Cedex 2, France, and UMR Génie des Procédés Environnement et Agro-alimentaire, CNRS 6144, ENITIAA, La Géraudière, 44322 Nantes Cedex 3, France

The identifiability of three diffusion properties (diffusion coefficient \(D\), partition coefficient \(K\), and convective mass transfer coefficient \(h_w\)) from desorption kinetics (or equivalently sorption kinetics) was investigated from a new approximated analytical solution of 1D diffusion coupled with a Robin boundary condition. A generalized least-squares criterion, which extends classical identification techniques, was proposed. The robustness of classical and modified criteria was compared on both experimental and simulated data including different sampling strategies and noise levels. Confidence intervals and bias were calculated for a large set of conditions: desorption levels ranged between 30% and 100% (equilibrium), the dilution factor ranged between \(10^{-3}\) and \(10^{-1}\), and the \(K\) value ranged between \(10^{-3}\) and 5.

1. Introduction

Diffusion transport of solutes, reactants, or pollutants between a solid and a fluid phase has major importance in many scientific and technological areas and has been extensively studied from the experimental point of view.\(^1\)–\(^3\) Conventional, the different properties that control the sorption or desorption rate (diffusion coefficient in the solid phase, \(D\); partition coefficient between both phases, \(K\); and interfacial mass transfer coefficient, \(h_w\)) have been estimated from independent experiments so that internal, interfacial, and thermodynamical phenomena may be separated.\(^4\),\(^5\) This work analyzes the identifiability and identification of several diffusion properties \(p = [D, K, h_w]\) from a single desorption/sorption kinetic, which may be subjected to physical constraints. This work is motivated by the need to achieve standard diffusion coefficients of additives and monomers in plastic materials when they are put in contact with food simulants. These diffusion coefficients can be used subsequently to test the compliance of food contact materials as acknowledged by the EU Directive 2002/72/EC\(^6\) or to perform a priori sanitary surveys of food contact materials.\(^7\)

Two generic constraints are considered: (i) when the macroscopic thermodynamic equilibrium is not reached (incomplete sorption/desorption kinetics) and (ii) when a significant contribution of interfacial mass transport resistances is expected. The first situation occurs when the final equilibrium desorption/sorption state is either not observed or nonobservable (e.g., because of prohibitive diffusion time, material aging, uncontrolled mass losses, or reactions). The second situation is met when the diffusant has a low chemical affinity for the liquid phase (thermodynamical limitation of mass transfer) and/or when the mass transfer resistance in the fluid phase is significant consequent to the viscosity of the fluid phase or consequent to the large resistance to the diffusion encountered in the solid phase (e.g., very thick materials or very low diffusion coefficients). Falsely neglecting thermodynamic and external mass transfer contributions, when they are not negligible, leads to a significant overestimation of the internal mass transport resistance in the solid phase and, therefore, to a significant understimation of the “true” diffusion coefficient in the solid phase (\(D\)). Such a bias in \(D\) estimation may yield erroneous conclusions if the value is included within a database, used for the optimization of either a process or a formulation, or used for regulation purposes.

The identification of the unknown vector of parameters, \(p\), from desorption or sorption kinetic data is commonly obtained by minimizing iteratively a merit function \(\chi^2(p)\) that assesses the closeness of experimental data (e.g., average concentration either in the solid phase or in the fluid phase) to simulated ones. A maximum likelihood estimator, \(\hat{p}\), is intuitively assumed to exist, to be unique, and to occur when the minimum of \(\chi^2(p)\) is reached. In practice, the identification of several properties from nonoptimally designed experiments may fail or may lead to unreliable results.\(^9\) Indeed, this approach assumes implicitly (i) that the system is identifiable and (ii) that the measurement errors are independent and identically distributed with zero mean. In particular, when errors do not fulfill such a hypothesis (e.g., because of data including colored noise or correlations), uncertainty increases drastically and least-squares estimators are biased.\(^9\)–\(^11\)

The paper is organized as follows. The issue of feasibility of the simultaneous identification of three properties from a single desorption/sorption kinetic is theoretically discussed in Section 2. The analysis is based on a novel algebraic solution of the general dimensionless 1D mass transport problem governing the desorption/sorption kinetic. The original partial differential equation (PDE) describing the mass transport problem is replaced by an algebraic differential equation (DAE) describing the trajectory of the sole measurable quantity. As a result, the evolution of the concentration either in the solid or in the liquid phase is described in a new approximation space, called kinetic phase diagram (KPD), where the concentration value at equilibrium can be more easily extrapolated and where the contributions of internal and external mass transfer resistances can be more easily distinguished.

The rest of the work presents identification results on practical cases based on both experimental and simulated data. The
performances of both the standard criterion, $\chi^2(p)$, and the
generalized least-squares criterion derived from KPD, $\chi^2(p)$,
are tested in terms of bias and uncertainty. Section 3 briefly
presents experimental conditions that were used to monitor
almost continuously the diffusion of a UV tracer from a
suspension of low-density polyethylene to different food simu-
lants. Since a time differentiation of the concentration is required
for KPD, a robust nondeterministic differentiation technique of
kinetic data is also presented. Section 4 discusses the global
performance of both criteria from experimental data. Section 5
presents a detailed sensitivity analysis of both strategies for a
large set of training data corresponding to different desorption
rates (from 30% to 100% of the equilibrium value), sampling
strategies, and mass Biot values. The conclusions and a general
discussion on the conditions that can be practically used to
identify three diffusion transport properties from a single
desorption/sorption kinetic follow in Section 6.

2. Theoretical Section: The Forward Problem and Its
Approximation

This section describes the unsteady diffusion of a species from
a solid phase toward a fluid phase (desorption kinetic) when
no reaction and interaction (plasticization, swelling) occur
between the solid and a liquid. The reverse transport corre-
sponding to the sorption case is not presented but it can be easily
extended from presented results. The solid phase is noted S.
The fluid phase is noted L because it is envisioned mainly as a
liquid, but the boundary and thermodynamic conditions are
generic enough to be also valid for gaseous phases. The system
S + L is assumed to be closed (no mass losses or gains).

Assuming 1-dimensional transport (the side effects are
negligible), a constant diffusion coefficient (D), and a constant
S-phase thickness, the dimensionless mass transport equation is

$$\frac{\partial u}{\partial \theta} = \frac{\sigma u}{\sigma x^2}$$ (1)

where $u = (C(x,t)/C_0^S)$, $x^* = (x/l_S)$, and $\theta = (tDl_S^2)$ are,
respectively, the dimensionless concentration, position, and time
(so-called Fourier time). C_0^S is a strictly positive constant.
Consistently, the concentrations C_S and C_L are concentrations
per unit of volume. l_S is either the whole or half thickness of
the solid material, depending on the type of contact with the L
phase, respectively, single- or double-sided.

The S–L interface is located at $x^*=1$. At this interface, the
local thermodynamical equilibrium is assumed. The desorption
and sorption are assumed to be reversible in each phase and
controlled by an equilibrium relationship similar to Henry’s
law.

This condition is generally well-verified for diffusants
distributed at low concentrations in dense phases, fluid phases,
or a combination of both. This description entails a possible
discontinuous concentration at the S–L interface. The ratio of
concentration on both sides of the interface defines the partition
coefficient between both phases: $K = (C_L(x^* = 1, t)/C_S(x^* =
1, t)$, where $C_I(x^*, t)$ is the local concentration in the L
phase.

In the L phase, a combination of molecular diffusion and
convection is assumed. Diffusion is assumed to dominate close
to the S–L interface, where the fluid velocity is the lowest,
while inertia forces due to natural or forced convection are
assumed to control the dispersion of the diffusing species
elsewhere. Since only concentration gradients are expected near
the S–L interface, the mass flux at the interface is controlled
by a mass transfer coefficient, h_m, with SI units in m s$^{-1}$,
whereas a uniform concentration $Ku|_{x^*\rightarrow\infty}$ exists far from the
S–L interface. The corresponding dimensionless boundary
condition (BC) is written as a Robin BC detailed in eq 2. A
similar equation was derived by Gandeck et al. $^{15}

$$j^* = \frac{-\partial u}{\partial x^*}|_{x^*=1} = BK(u|_{x^*=1} - u|_{x^*\rightarrow\infty})$$ (2)

where $j^* = (I/DC^S_0)j$ is a dimensionless flux and j is the
interfacial mass flux density (with SI units in kg m$^{-2}$ s$^{-1}$). B
$= (R_0/R_1) = (h_m/D)$, the so-called mass Biot number, is the
ratio between the equivalent resistance to diffusion in the solid
phase, R_0, and the mass transport resistance at the S–L interface,
R_1.

$Ku|_{x^*\rightarrow\infty}$ stands for the concentration on the liquid side far
from the S–L interface. When the concentration is homogeneous
far from the S–L interface (i.e., when the volume of the
boundary layer is assumed to be negligible compared to the
volume of L), it is conveniently approximated by the concentra-
tion in the bulk, as it would be measured in L. Both descriptions
are almost equivalent when the transport property in L is much
greater than the transport property in P (the case of most liquids)
or when a mixing process (e.g., convection) occurs on the L
side. The diffusant mass balance between S and L phases
between times 0 and θ leads to the following approximation
for $u|_{x^*\rightarrow\infty}$.

$$u|_{x^*=1} - u|_{x^*\rightarrow\infty} = u|_{x^*=1} - u|_{x^*\rightarrow\infty} + \frac{1}{K} \int_0^\infty j^*(\tau) d\tau =

u|_{x^*=1} - u|_{x^*\rightarrow\infty} + \frac{1}{K} \int_0^\infty j^*(\tau) d\tau$$ (3)

where $Ku|_{x^*\rightarrow\infty}$ is the initial concentration in the L phase,
assumed to be uniform. $l_S = (S_{SL}/V_L)$ is the characteristic
dimension of the liquid reservoir of volume V_L and with a
surface contact area with S noted S_{SL}. L^* is a dimensionless length and characterizes the typical relative
distance that a diffusant initially in the S phase must cross before
migrating into the L phase. When the volume of the liquid region
subjected to to a concentration gradient is no longer negligible
(e.g., when $L^* \rightarrow 1$), $u|_{x^*\rightarrow\infty}$ must preferably be inferred by
introducing a transport equation for the liquid phase. If not, the
use of the average concentration in L, defined by eq 3, instead
of the concentration far from the interface (in the bulk), modifies
the commonly accepted definition of the mass transport coeffi-
cient, h_m, in eq 2. In the rest of the work, the volume of the
boundary layer is assumed to be not limiting.

Equation 2 combined with eq 3 yields the practical form of
the BC, written here as an integro-differential operator:

$$j^* = \frac{-\partial u}{\partial x^*}|_{x^*=1} =

BK(u|_{x^*=1} - u|_{x^*\rightarrow\infty}) - BL^* \int_0^{\infty} j^*(\tau) d\tau$$ (4)

Two extreme cases are derived from eq 4 by assuming (i) $R_1\rightarrow
0$ (i.e., no limiting mass transfer boundary layer), (ii) K/L^*
$
\rightarrow \infty$.

Case (i) is inferred by differentiating eq 3 with time for $u|_{x^*=1}$

$$\frac{\partial u|_{x^*=1}}{\partial \theta} = \frac{L^*}{K} \frac{\partial u}{\partial x^*}|_{x^*=1} = \frac{L^*}{K} \frac{\partial u}{\partial x^*}|_{x^*=1}$$ (5)
By analogy with wave propagation equations, eq 5 is known as a reflecting boundary condition, where the amount of matter that leaves the S–L interface modifies in return (i.e., after accumulation or “reflection”) the mass transfer resistance at the interface. \(K/L^* \) is the equivalent dimensionless “reflecting distance”, where the quantity \(K \) is similar to a dimensionless “absorbing” coefficient.

Case (ii) corresponds to a very large volume of L \((L^* \to 0) \) or capacity \((K \to \infty) \) in BC defined by eq 2, that is, \(\partial u/\partial x \to 0 \) or the equivalent Dirichlet’s BC:

\[
\left. u(\theta) \right|_{x=x^*} = \left. u(x^*) \right|_{\theta=0} \tag{6}
\]

For the left-side boundary, \(x^*=0 \), an impervious, or equivalently a symmetry, BC is applied:

\[
\frac{\partial u}{\partial x} \bigg|_{x=0} = 0 \tag{7}
\]

2.2. Formulation of Kinetic Phase Diagrams (KPDs).

In its general form, the partial differential equation (PDE), defined by eq 1, combined with an initial condition (IC) \(u(x^*, \theta = 0) \) and BCs defined by eq 4 and 7 has no exact analytical solution.\(^{16}\) Particular solutions must be approximated (i) via a numerical resolution with low- or high-order spectral techniques or (ii) via a local decomposition of the solution as an expansion series on a suitable basis of analytical eigenfunctions. A general solution as an expansion series is detailed by Sagiv.\(^{3}\)

Table 1. Values of \(\alpha \) and \(j^*_R \) Defined in Equation 12 for Particular Conditions on Parameters \(K, B \), and \(L^* \) (Assuming Fully Developed Parabolic Profiles)

<table>
<thead>
<tr>
<th>Reduced Condition</th>
<th>(\alpha)</th>
<th>(j^*_R)</th>
<th>(\bar{u}_{t=\infty} = \frac{j^*_R}{\alpha})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K \to \infty)</td>
<td>3</td>
<td>(3u(0))</td>
<td>(u(0))</td>
</tr>
<tr>
<td>(K \to 0)</td>
<td>(BL^*)</td>
<td>(BL^*u(0))</td>
<td>(u(0))</td>
</tr>
<tr>
<td>(L^* \to 0)</td>
<td>(BK/1 + BK)</td>
<td>(BKu(0))</td>
<td>(u(0))</td>
</tr>
<tr>
<td>(B \to \infty)</td>
<td>3 ((1 + L^*/K))</td>
<td>(3u(0))</td>
<td>(L^*u(0) + Ku(0))</td>
</tr>
<tr>
<td>(B \to 0)</td>
<td>(BL(K + L^*))</td>
<td>(Bu(0) + Ku(0))</td>
<td>(L^u(0) + Ku(0) / (K + L^))</td>
</tr>
</tbody>
</table>

Figure 1. Parabolic approximations of internal concentration profiles for \(u(x^*, \theta = 0) = 1 \): (a) examples of approximation by a piecewise second-degree polynomials in case of a short time S–L contact and the same residual concentration \(\bar{u} \); (b) details of the profile in bold line (region 1, \(u = 1 \); region 2, \((\partial^2 u/\partial x^2) = C^3 \)); (c) examples of approximation by single second-degree polynomials in case of long time S–L contact and the same value of \(\bar{u} \); (d) idem for the same value of \(u(x^* = 1) \).
The fully developed parabolic profile is uniquely defined by boundary constraints on its first derivatives, defined in eqs 2 and 7, at the S phase boundaries and by a particular value:

$$u(x^*) = \left. \frac{1}{2} \frac{\partial u}{\partial x^*} \right|_{x^*=1} x^{*2} + u|_{x^*=0}$$ \hspace{1cm} (9)$$

From $j^* = (\partial u/\partial x^*)|_{x^*=1}$ and the definition of the residual concentration $\bar{u} = \int_0^1 u(x) \, dx$, eq 9 becomes:

$$u(x^*) = \left(1 - \frac{1}{2} x^2 \right) j^* + \bar{u}$$ \hspace{1cm} (10)$$

The corresponding KPD equation $j^* = f(\bar{u})$ is inferred from eq 4 by replacing $u|_{x^*=c}$, by its value calculated via eq 10 and by defining the mass balance for the S phase from a change in \bar{u} with time, \bar{u}, which yields:

$$\int_0^\bar{u} j^* \, d\tau = \bar{u}|_{\tau=0} - \bar{u}$$ \hspace{1cm} (11)$$

where $\alpha \bar{u} = j^* \rho$. From eq 12, the mass transfer between the S and L phases appears to obey a linear superposition of both first- and zero-order kinetics. The flux at the S–L interface is

$$j^* \left[\bar{u} \right] = \frac{\rho}{\bar{u}} \frac{\partial u}{\partial x^*} B K \left[\frac{L^*}{K} \bar{u} - \frac{L^*}{K} \bar{u} x \frac{\partial u}{\partial x^*} \right] = \frac{1}{3} B K \left[\frac{L^*}{K} \bar{u} x \frac{\partial u}{\partial x^*} \right]$$ \hspace{1cm} (12)$$
consequently decomposed between a driving flux j^*_D proportional to \tilde{u} (proportionality coefficient α) and a resisting flux j^*_R independent of \tilde{u}. As a result of $j^* = f(\tilde{u})$ for constant B, K, and L^*, α is the slope of the characteristic curve and $-j^*_R$ is the intercept with $\tilde{u} = 0$. The residual concentration at equilibrium is obtained from the intercept with $j^* = 0$ and is defined as the average state between $(\tilde{u}^*, j^*) = (0,0)$ and $(\tilde{u}_{i=x^{-}}^*, j^*) = 0$, respectively, with the weights L^* and K:

$$\tilde{u}_{i=x^{-}}^* = \frac{L^*\tilde{u}_{i=0}^0 + K\alpha^0_{i=x^{-}}^*}{K + L^*} \quad (13)$$

All states (\tilde{u}, j^*) are nonlinear functions of parameters B, K, and L^*. Table 1 summarizes typical values of α, j^*_R, and $\tilde{u}_{i=x^{-}}^*$ for reduced cases of eq 11. The transport rate is maximal for $K \to \infty$ with $\alpha = 3$. The flux is then independent of B (i.e., hydrodynamic conditions) and of L^* (i.e., volume effect of the L phase). The condition $B \to \infty$ leads to a lower transfer rate so that the difference $j^*_{L^*\to 0} - j^*_{L^*=0}$ increases linearly with the amount of diffusant accumulated in the L phase $L^*/K(\tilde{u}_{i=0}^0 - \tilde{u})$. The condition $L^* \to 0$ (infinite dilution) yields a deviation $j^*_{L^*\to 0}$, which is independent of \tilde{u} (without effect due to the diffusant accumulation in the liquid phase). This deviation also increases significantly when the product BK decreases as $\frac{3}{2}BK\beta + BK$. From eq 6, diffusion within the S phase has no significant effect on the overall kinetic when the ratio (j^*/B) does not depend on B. This case corresponds to the denominator of eq 12 close to 1, that is, when $BK \ll 3$.

2.2.2. Coarse Solution for Short Time of Contact

According to Figure 1 and eq 8, the KPD equation for short time of contact is inferred from the last calculations (i) by replacing x in eq 9 by v with $v = (x - x^*)/(1 - x^*)$ (for $x^* \leq x \leq 1$) and $u_{i=1}=\tilde{u}_{i=0}$, (ii) by noting $j^*(u) = (1/(1-x^*))((d\tilde{u})/(d\tilde{u}))|_{x^*}$, and (iii) by defining $\tilde{u} = \tilde{u}^*u_{i=0}^0 + (1-x^*)\tilde{u}^*$ with \tilde{u}^* being the averaged concentration between x^* and 1. This leads to eq 14:

$$u(v) = -\frac{3}{2}\tilde{u}^*(\tilde{u}_{i=0}^0 - \tilde{u}^*)v^2 + \tilde{u}_{i=0}^0 \quad (14)$$

By replacing $u_{i=x^{-}}^* = u_{i=1}$ in eq 4 by its value given in eq 14, one gets

$$j^* = \frac{B}{2}[\frac{3}{2}\tilde{u}^*(\tilde{u}_{i=0}^0 - \tilde{u}^*)]^{1/2} \cdot \int j^* \cdot \left(K - L^* \cdot \tilde{u}^* \cdot K \cdot M_{1^{-}}^0 \right) + 0 \quad (15)$$

Equation 15 is a second-degree polynomial in $\sqrt{j^*}$, with a unique positive root, which yields

$$j^* = \frac{B}{2}(b - \sqrt{b^2 + 4c}) + c \quad (16)$$

To be physically consistent, eq 15 must verify the inequality $x^*_i = 1 - \sqrt{6(\tilde{u}_{i=0}^0 - \tilde{u}^*)} \geq 0$, that is $j^* \geq 6(\tilde{u}_{i=0}^0 - \tilde{u}^*)$. In other cases, the hypothesis $u_{i=1} = \tilde{u}_{i=0}$ is no longer valid and eq 16 must be used instead.

Equation 16 varies nonlinearly with \tilde{u} and parameters B, K, and L^*. By noticing that $b \to 0$ when $\tilde{u} \to \tilde{u}_{i=0}^0$, a first-order approximation in \tilde{u} of the initial dynamic is inferred from a third-order expansion series in b of eq 16. It yields

$$j^* = c - \sqrt{b}b + \frac{b^2}{2} + o(b^3) \quad (17)$$

The approximation (eq 17) demonstrates that j^* is decreasing and convex with an initial value $j^*_{i=0} = BK(\tilde{u}_{i=0}^0 - \tilde{u}^*)$. The very initial decrease in j^* when \tilde{u} decreases is controlled by the first term c, which is very similar to eq 12. For larger decreases in \tilde{u} and large values of the product BK, j^* exhibits a significant curvature, which is responsible for the discrepancy in the KPD shape between short-time contact (STC) and fully developed parabolic (FDP) regimes. Higher-order expansions of eq 16 demonstrate that the curvature of $j^* = f(\tilde{u})$ decreases when \tilde{u} decreases down to a minimal value when b is close to $(\tilde{u}^*_i)^{\sqrt{c}}$. j^* is then converging to a straight line defined by

$$j^* = \frac{BK}{1 + 3BK}Ku_{i=0} + \left(1 - \frac{L^*}{K}\tilde{u}_{i=0}^0 - \tilde{u}^*_{i=0}\right) \quad (18)$$

At their intersection, eqs 12 and 18 provide only an approximation of class C^0 of KPD. A continuous approximation of class C^1 is, however, achieved for small values of BK, since eqs 12 and 18 have close slopes at their intersection.

2.3. Typical Kinetic Phase Diagrams

2.3.1. Comparisons between KPD Approximations from Algebraic Differential Equation (DAE) and Finite Element (FE) Techniques

The DAE $-d(\tilde{u}d\tilde{u}) = j^*(\tilde{u}, \tilde{v})$ defined by eqs 12 and 16 was efficiently solved for $u_{i=0} = 1$ via a quasi-constant step-size implementation of the numerical differential formulas (NDF) in terms of backward differences.17 The results obtained from the DAE formulation and with a direct but more time-consuming numerical resolution of the PDE problem are compared in Figure 2. The PDE defined by eqs 1, 4, and 7 was solved using a finite element technique (FE) based on 50 uniformly distributed nodes and quadratic elements. A same-time marching procedure based on variable-order NDF formula (order between 2 and 5) was used for both DAE and FE formulations. In the FE formulation, the flux j^* was calculated analytically from eq 8 on the basis of the available estimations of \tilde{u} and $u_{i=x^{-}}^* = u_{i=1}$.

Approximations of $j^* = f(\tilde{u})$ from DAE and FE formulations yield similar results during STC and FDP regimes and, thus, confirmed consistency of the proposed approximation. The total computational time with the DAE was, however, reduced by a factor between 100 and 1000 for the same code implemented in Fortran 90.

2.3.2. Typology of KPD Shapes

In Figure 2, extreme shapes of KPD correspond to a straight line and a hyperbolic-like shape for $BK \ll 1$ and $BK \gg 1$, respectively. Cases with intermediate BK values are identified by an intermediate convexity during the STC regime. For $L^* \ll 1$, intermediate cases are not discernible. Intermediate KPD obtained for $L^* = 0.01$ and the same $BK = 1$ (respectively, $0.1 \times 10, 1 \times 1$, and 10×0.1) thus yields similar results. For higher values of L^*_i, intermediate cases are discernible from the change in either KPD slope during FDP regime or equilibrium state.

2.3.3. Estimation of the Equilibrium State Based on KPD

Figure 2 confirms that the final state may be easily linearly extrapolated from the FDP regime. As a result, the equilibrium state becomes observable (i.e., predictable) as soon as the intercept of the KPD tangent with $j^* = 0$ is close enough to the equilibrium value ($L^*/K + L^*$). By means of the reduced concentration, $X = (\tilde{u}_{i=0}^0 - \tilde{u}^*)\tilde{u}_{i=0}^0 - \tilde{u}^*)$, an exponential law was fitted to estimate which minimal fraction X_{min} of the whole KPD diagram was derived to predict the equilibrium state for a particular value of the product BK.

$$X_{\text{min}} = 85\% (1 - e^{0.13BK}) \quad (19)$$
Equation 19 illustrates that ~10% of the whole kinetic must be observed to estimate accurately the equilibrium state if \(BK \) = 1, whereas more than 70% and 85% must be observed for, respectively, \(BK = 10 \) and \(BK \gg 1 \).

The previous strategy may be extended to variable external conditions with time (dilution effect, variation in stirring, and change of solvent) by vertically translating the current last “observed” state from \((\bar{u}_i, j_i^{\text{st}})\) to \((\bar{u}_i, j_i^{\text{st}})\), where numbers 1 and 2 are related to the KPDs corresponding to the old and new conditions, respectively. The new “possible” equilibrium is, therefore, approximated from the linear prolongation of the new state with the previous slope (only \(j_k^* \) is updated) or, more accurately, with the new slope when it is available or known (both \(\alpha \) and \(j_k^* \) are updated).

2.4. Comments on the Feasibility of the Simultaneous Estimation of \(D, h_m, \) and \(K \) from KPD Abacus and Experimental Data. KPD shapes suggested that the transport properties \((D \text{ and } h_m)\) and the partition coefficient \((K)\) cannot be estimated at the same time with the same accuracy from an experimental data set \((\bar{u}_i, j_i^*) = (D(j_i^*)^p, \) where \(j^* \) is a scaled flux in \(\text{m}^{-1} \) (flux related to an initial concentration of 1). This subsection examines theoretically how the extraction of different information from STC and FDP can improve the well-poseness of the identification of the three properties.

2.4.1. Strategy Based on the Combination of Information Available during STC and FDP Regimes. A rough estimation of the dependence between parameters is provided from the analytical expression of the most typical and independent characteristics of the scaled KPD for both the STC and FDP regimes. For the three unknown parameters, we choose three characteristics: the initial state \((1, j_1^*|_{j=0})\), an estimate of the KPD curvature \(\beta_{j_{\text{STC}}}(S_{j_{\text{STC}}})^2(2) \) for a particular state during the STC regime \((\bar{u}_{j_{\text{STC}}}, j_{j_{\text{STC}}})\), and finally the equilibrium state \((\bar{u}_{j_{\text{FDP}}}, 0)\). These characteristics estimated from eqs 17 and 12 lead to the following system:

\[
\begin{align*}
\left\{ \begin{array}{l}
J^S|_{j=0} = \frac{DBK}{j^S} = hK \\
B^S_{j_{\text{STC}}} = \frac{DB^2K^2}{\beta_{j_{\text{STC}}}^2} \propto j^S|_{j=0} \frac{(hK)^2}{D} \\
\bar{u}_{j_{\text{FDP}}} = \frac{L^S}{K + L^S}
\end{array} \right.
\]

(20)

It follows that the unique solution is

\[
\begin{align*}
D & \propto j^S|_{j=0}^2 \\
\beta_{j_{\text{STC}}} & \propto \frac{1}{L^S} \frac{1 - \bar{u}_{j_{\text{FDP}}}}{\bar{u}_{j_{\text{FDP}}} - \bar{u}_{j_{\text{FDP}}}} \\
K & \propto \frac{1}{L^S} \frac{1 - \bar{u}_{j_{\text{FDP}}}}{\bar{u}_{j_{\text{FDP}}} - \bar{u}_{j_{\text{FDP}}}}
\end{align*}
\]

(21)

where, in the case of incomplete data (nonobserved equilibrium), \(\bar{u}_{j_{\text{FDP}}} \) may be estimated from the \(\alpha \) value (eq 12) and a particular state during the FDP regime \((\bar{u}_{j_{\text{FDP}}}, j_{j_{\text{FDP}}})\):

\[
\bar{u}_{j_{\text{FDP}}} = \frac{L^S j_{j_{\text{FDP}}} \beta_{j_{\text{STC}}} S_{j_{\text{STC}}}}{L^S j_{j_{\text{FDP}}} \beta_{j_{\text{STC}}} S_{j_{\text{STC}}} + b^2_{j_{\text{STC}}} S_{j_{\text{STC}}} - 3b^2_{j_{\text{STC}}} S_{j_{\text{STC}}} - 3b^2_{j_{\text{STC}}} S_{j_{\text{STC}}} - 3b^2_{j_{\text{STC}}} S_{j_{\text{STC}}}}
\]

(22)

Consequently, an estimation of the initial flux (or that during the STC regime) is required for both transport properties, \(h_m \) and \(D \). Besides, the observation of the kinetic must be long enough and with appropriate sampling to make possible the estimation of the KPD curvature with enough accuracy. In the presence of large unscaled time data, a poor estimation may lead to unreliable transport properties. The relative error in \(D \) is proportional to the product of relative errors in \(j^S|_{j=0} \) and \(B^S_{j_{\text{STC}}} \), whereas the relative errors in \(h_m \) and \(K \) vary like \(1/(\bar{u}_{j_{\text{FDP}}} - \bar{u}_{j_{\text{FDP}}})^3 \). Thus, for a coupled estimation of the three parameters, the quality of the estimation of \(D \) depends mainly on the dynamics during STC regime, whereas both \(h_m \) and \(K \) are very sensitive to the quality of the prediction of the equilibrium state derived from data available during the FDP regime.

An accurate estimation of the dimensionless \(B \) number requires information from both the STC and FDP regimes:

\[
B \approx \frac{1}{L^S} \frac{b^2_{j_{\text{STC}}} S_{j_{\text{STC}}} - 3b^2_{j_{\text{STC}}} S_{j_{\text{STC}}} - 3b^2_{j_{\text{STC}}} S_{j_{\text{STC}}} - 3b^2_{j_{\text{STC}}} S_{j_{\text{STC}}}}{L^S j_{j_{\text{FDP}}} \beta_{j_{\text{STC}}} S_{j_{\text{STC}}} - 3b^2_{j_{\text{STC}}} S_{j_{\text{STC}}} - 3b^2_{j_{\text{STC}}} S_{j_{\text{STC}}}}
\]

(23)

2.4.2. Strategies Based Only on the Information Available during the FDP Regime. Identification strategies based only on the FDP regime do not provide enough information to estimate all three parameters. This impossibility is confirmed by KPDs that are completely determined by two parameters or particular states (see eq 12). Nevertheless, this difficulty may be overcome if different achievements of scaled \(\alpha \text{ and } \alpha \text{-LDPE particle size 300...} \text{laminate to yield a 30 mm...} \text{LDPE (low-density polyethylene) particle. DMA is a relatively fast-diffusing substance, with a maximum absorbance at 330 nm, and is sparingly soluble in polar solvents (log } P \approx 2.1) \text{}.

3. Materials and Methods

3.1. Desorption Experiments. In unsteady mass transfer conditions, the experimental determination of KPD \(j = \beta(C_l) \) is difficult since \(j \) cannot be measured directly and independently. It is conventionally derived from the differentiation of \(C_l \) with time (see Section 3.1.3). The accuracy of \(j \) estimates depends strongly on the sampling rate and on the noise level in \(C_l \) measurements.

Desorption kinetics with relative high frequency were achieved by monitoring the concentration rise of a UV tracer, 2,5-dimethoxyacetophenone (DMA), within a stirred suspension of LDPE (low-density polyethylene) particles. DMA is a relatively fast-diffusing substance, with a maximum absorbance at 330 nm, and is sparingly soluble in polar solvents (log \(P \approx 2.1)\).

3.1.1. Solid-Phase Preparation. LDPE resin containing DMA at 0.6% (w/w) was prepared by initially soaking virgin LDPE powder (particle size 300 \(\mu \text{m} \)) into a methanol solution with DMA and by subsequently vaporizing the solvent under vacuum. Dried powder was extruded the same day, then soaked in a four-temperature-zone monoscrew extruder (model Scania RHED 20.11.D, France; set zone temperatures: 125, 130, 135, and 135 °C) and laminated to yield a 30 mm × 0.5 mm ribbon. Died ribbon was stored at −18 °C before use. The ribbon was finally transversally cut with a microtome so as to provide particles with the following sizes: 2lS × lS = 0.5 mm and 2lS × lS = 20 ± 5 mm, where 2lS ranged between 3 and 100 μm. The uniformity of cut and tracer concentration was controlled from microscopic observations (UV charge-coupled device (CCD) camera, model Hamatsu-C4742-95812E5, coupled with a UV microscope, model Karl Zeiss -MMP800MCS) at constant transmitting light wavelengths, respectively, 420 and 330 nm.
Experiments were set up with thin particles to ensure (i) one-dimensional mass transfer (i.e., side effects were assumed to be negligible since \(l_1 / l_S \geq 10 \)) and (ii) low \(B \) values that ranged between 1 and \(10^3 \). The latter conditions ensured that both diffusion and external resistances were acting simultaneously on desorption.

3.1.2. Liquid-Phase Preparation

Ethanol and methanol (99% purity) were chosen as L phase to make possible the sedimentation of particles and to provide different \(K \) values.

3.1.3. Desorption Cell and On-line \(C_L \) Measurement

The desorption step was performed at 20 °C in quartz 3 mL cells located inside a thermostatic modified spectrophotometer (model Shimadzu–UV2401 PC), including a miniaturized immersed magnetic stirrer (stirring velocity 200 rpm). The cell position was adjusted so that the beam crossed the suspension at \(~10\) mm from the cell bottom and below a possible vortex at the air–liquid interface. The reference was set up from an identical cell filled with the liquid-phase alone but not stirred.

Figure 3. (a,c,e) Experimental desorption kinetics, (b,d,f) corresponding KPD \(\beta = f(\bar{n}) \). The conditions were as follows: (a,b) reference conditions \((2l_S = 50 \mu m\) particles in ethanol, \(L^* = 7.2 \times 10^{-3} \)) with three repetitions noted \(\{r_i\}_{i=1,...,3} \); (c,d) \(2l_S = 50 \mu m \) in ethanol (noted EtOH) and methanol (noted MetOH), respectively; (e,f) \(2l_S = (3,10,25,50,100) \mu m \) in ethanol. Experimental and fitted data are plotted with symbols and lines, respectively.
Derivatives of \(C_L \).

Assuming no DMA loss between solid and liquid phases:

\[
\frac{dC_p}{dt} = 0
\]

were linearly correlated to reference DMA concentration values.

Maxima values at 330 nm or cumulative values between 280

and 400 nm of corrected spectra provided similar results and

were linearly correlated to reference DMA concentration values.

In addition, it was established that the calibration curve was

not sensitive to the stirring velocity in the range 0–400 rpm. It

is worth noticing that our procedure measured only the DMA

absorbance in the solution and not that within the solid particles.

3.2. Numerical Procedure for the Assessment of KPD

Features \((\tilde{p}, \frac{d^2 \tilde{p}}{dt^2})\) from \(C_L \) Measurements. 3.2.1. Macro-

scopic Mass Balance in Diffusing Substance. Experimental

KPD were expressed as \(\tilde{p} = f(\tilde{u}) \) and were calculated by

assuming no DMA loss between solid and liquid phases:

\[
\begin{align*}
\tilde{u}(t) &= \frac{1}{L^2} \frac{C(t)}{C_p(t)} \\
\tilde{S}(t) &= \frac{1}{C_p(t = 0)} \frac{d^2 C(t)}{dt^2} \\
\frac{d^2 \tilde{S}}{dt^2} &= -\frac{1}{L^2} \frac{L^2 C(t)}{C_p(t = 0)} \frac{d^2 C(t)}{dt^2}
\end{align*}
\]

(24)

3.2.2. Continuous Estimations of First and Second Time

Derivatives of \(C_L \). The direct application of eq. 24 requires one

to approximate first and second derivatives \((dC_p/dt) \) and \((d^2C_p/dt^2) \) with sufficient accuracy when \(C_L \) is subjected to noise and

includes possible changes in acquisition rate. To not spread

experimental errors between the STC and FDP regimes,

nondeterministic local and differentiable approximates of \(C_L(t) \)

were preferred to a global continuous fitting function. Such

methodologies provide an extension to classical regression

techniques by combining both filtering techniques (weighting

kernels) and maximum likelihood strategies via the introduction

of constraints such as smoothness or a priori knowledge.18,19

For a data set \(\{t_i, C_{Li},i\} = 1..M \) including \(M \) samples, each

\(\{C_{Li}\} = 1..M \) and its derivatives are locally approximated from

a local polynomial regressor of degree \(k \), noted \(\{\hat{\psi}\} = 1..M \).

For each sampling time \(t_i \), polynomial coefficients \(\psi_{k,i} \) are

defined in the local normalized base, \(\{\tilde{t}_i\} \), where \(\tilde{t}_i = (t

- t_i)/\tau \), \(\tau \) is a positive constant defined in eq. 26. The whole

approximation process is modeled as a modified Likhonov regularized

least-squares problem and solved using \(M \) singular-value

decompositions as described by Hansen:21

\[
\hat{\psi}_{k,i} = \min_{\hat{\psi}_{k,i}} \sum_{j=1}^{k} \left(\begin{array}{c}
K_{k,j,i} \psi_{k,j,i} \\
L_{k,j,i}
\end{array} \right)^2
\]

all \(i = 1..M \) (25)

where \(\{K_{k,j,i}\} = 1..k \) and \(\{L_{k,j,i}\} = 1..i \) are the local Vandermonde ma-

trices defined by \(\tilde{t}_i \), \(\{D_{k,j,i}\} = 1..i \) are the corresponding

nth-order differentiation matrices, \((l!l!)^{-1/2} \), and \(\tilde{z}_i^2 \) is a

positive scalar that controls the tradeoff between the closeness

to the data and the smoothness. \(\omega_{ij} \) is a symmetric (i.e.,
noncausal) weighting function used for low bypass filtering data

points by decreasing their influence in each local interpolation

sequence according to their distance from \(t_i \). Moving overlapping

windowing was applied using a tricube kernel with support on

\([-1, 1]\).

\[
\omega_{ij} = \left[\max \left(1 - \frac{|t_j - t_i|}{\tau} \right)^3 0 \right] (26)
\]

where \(\tau \) is the so-called bandwidth, which restricts only the

observations in the interval \([t_i - \tau, t_i + \tau] \) to be used for the

identification of \(\hat{\psi}_{k,i} \). As a result, \(\{\hat{\psi}\} = 1..M \) are envisioned as

the best local polynomial approximates of degree \(k \) with the

smallest \(M \)th derivative at time \(t_i \) (i.e., almost equivalent to a

smoothing spline of order \(2m \) with a break at each data site).

Because of the high regularity of the true solution \(C_L \), the

best results were obtained by choosing \(k = 4, m = 3 \), and \(\tau =

1500 s \) and by assuming symmetric boundary conditions at both

ends of the measured signal. Finally, \(\hat{\psi}_{k,i} \) and \(d^2 \hat{\psi}_{k,i} \) were

analytically calculated from the \(\{\hat{\psi}\} = 1..M \) derivatives at time \(t_i \)

using eq. 24. For the same trial, the uncertainty at time \(t_i \) in
each local regressor value and its derivatives were estimated

using standard deviations related to \(C_{Li}\) and \(\hat{\psi}_{k,i} \), noted

respectively, \(\sigma_{C_i}^2 \) and \(\sigma_{\psi_i}^2 \), and derived from the diagonal

elements of the covariance matrix of the local regularized least-
squares problem defined by eq 28. Each covariance matrix was

calculated by means of an orthogonal-triangular decomposition

(QR) of the local regression operator \(A_i \) defined by eq. 27 and a

singular-value decomposition of the so-computed matrix \(R_i \).

\[
A_i = \begin{bmatrix} W_{li} & K_{li} \end{bmatrix} = Q_i R_i \tag{27}
\]

where \(W_{li} = \omega_{ij} \) and \(W_{li} = 0 \) for \(j = l \).

A similar procedure was used to assess the standard deviation

related to \((d^2C_p/dt^2)_{li} \), noted \(\sigma_{\psi_i}^2 \), from a local approximation

of the KPD \(\{C_{Li}, \hat{\psi}_{i}\} \) based on a bivariate weighting kernel,

which takes into account errors on both variables. The regu-

larization parameter \(\tilde{z}_i^2 \) was chosen to globally minimize the

confidence intervals on first derivatives.

3.3. Generalized Least-Squares Criterion to Identify \(p = [D, K, h_m]^T \).

Transport properties were simultaneously identified by

minimizing a generalized least-squares criterion incorporating

the main features of KPD.

\[
\chi^2(p, d, M) = \sum_{i=1}^{M} \left[\frac{C_{Li} - \hat{C}_{Li}(t_i p)}{\sigma_{C_i}^2} \right]^2 + \frac{\left(\frac{d^2 \tilde{S}_{li} - \hat{d}^2 \tilde{S}(t_i p)}{\sigma_{\psi_i}^2} \right)^2}{\sigma_{\psi_i}^2} + \frac{\left(\frac{d^2 \tilde{S}_{li} - \hat{d}^2 \tilde{S}(t_i p)}{\sigma_{\psi_i}^2} \right)^2}{\sigma_{\psi_i}^2} + P(p, d) \tag{28}
\]

where \(d = 1, 2, 3 \) is the dimension of the kinetic approximation

space and \(\{\lambda_{i}\} = 1..d \) are coefficients that verify \(\sum_{i=1}^{d} \lambda_{i} = 1 \) and

balance the deviations in magnitude of the distance function

according to the source of information available at time

\(\{t_i\} = 1..M \). \(\bar{X} \) and \(\sigma_X \) denote predicted values of \(X \) from the
4. Experimental Section

Raw spectra of suspensions presented disrupted and biased signals including up to 40% of noise. Filtering and bias correction removed outliers and reduced errors below 10%. The absorption at the wavelength of 330 nm was used to estimate C_l and subsequently \hat{u}_j. Experimental kinetics, \hat{u}_0, and \hat{p}, $\chi^2 = f(\hat{p})$, are synthesized in Figure 3. Identified values and 95% confidence intervals of D, K, h, and B, identified from data plotted in Figure 3 are summarized in Table 2. It is emphasized that \hat{p} is expressed in m s^{-1} and is equivalent to the reciprocal of an overall mass transfer resistance between the solid and liquid phases.

4.1. Typical Kinetics and KPD for Reference Conditions

Parts a and b of Figure 3 present results obtained for reference desorption conditions ($\delta_0 = 50 \, \mu m$, in ethanol, $L^* = 7.2 \times 10^{-3}$). Desorption kinetics were acquired in triplicates (repetitions are noted $(r_3 = 1.3)$ until equilibrium for repetitions r_1 and r_2 and for a desorption level of 90% for repetition r_3. The fluctuations of \hat{u}_0 at equilibrium showed a random noise level up to 10% of the observed variation scale. Errors between repetitions had the same order of magnitude and confirmed the good repeatability of both the sampling procedure and the acquisition one. The three experimental kinetics were, therefore, similarly fitted with a $d = 1$ model (Figure 3a). The main difference was observed for the r_3 kinetic that led to different asymptotes.

Experimental and fitted KPD ($d = 2$ criterion) also exhibited good repeatability. 95% confidence intervals assessed for all repetitions and extracted from the covariance matrix of local regressors were similar and about 5% and 15% of the full variation scale for \hat{u} and \hat{p}, respectively. Fitted KPD decreased monotonically with a low curvature, whereas experimental KPD evolved as wavy decaying trajectory with an increasing frequency when \hat{u} was decreasing. The deformation of the time-frequency domain in KPD space was responsible of such an apparent acceleration of oscillations.

For the same starting guess and identification strategy, all repetitions yielded similar values for D, K, h_m, and B (Table 2). Large differences in D and B values up to 2 decades were, however, observed between $d = 1$ and $d = 2$ criteria. Criteria based on $d = 3$ gave similar results and are not shown. The sensitivity analysis confirmed that the confidence intervals were

Table 2. Estimated Values of Parameters D, K, h, and B (Row $a = 2.5$ Percentile, Row $b = Median$ Value, Row $c = 97.5$ Percentile)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>$D \times 10^2$ (m²/s)</th>
<th>$K \times 10^3$</th>
<th>$h \times 10^6$ (m·s⁻¹)</th>
<th>Bi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$d = 1$</td>
<td>$d = 2$</td>
<td>$d = 1$</td>
<td>$d = 2$</td>
</tr>
<tr>
<td>r_1</td>
<td>a 0.16</td>
<td>1.3</td>
<td>2.6</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>b 0.41</td>
<td>1.8</td>
<td>2.6</td>
<td>2.6</td>
</tr>
<tr>
<td></td>
<td>c 2.3</td>
<td>3.9</td>
<td>2.7</td>
<td>2.6</td>
</tr>
<tr>
<td>r_2</td>
<td>a 0.17</td>
<td>1.1</td>
<td>2.6</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td>b 0.29</td>
<td>1.5</td>
<td>2.6</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td>c 1.4</td>
<td>2.1</td>
<td>2.7</td>
<td>2.5</td>
</tr>
<tr>
<td>r_3</td>
<td>a 0.33</td>
<td>0.84</td>
<td>2.1</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td>b 0.48</td>
<td>0.96</td>
<td>3.1</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td>c 2.4</td>
<td>1.3</td>
<td>3.9</td>
<td>2.6</td>
</tr>
<tr>
<td>EtOH^\prime</td>
<td>a 0.14</td>
<td>1.1</td>
<td>2.6</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td>b 0.18</td>
<td>1.6</td>
<td>2.7</td>
<td>2.6</td>
</tr>
<tr>
<td></td>
<td>c 2.3</td>
<td>2.7</td>
<td>2.8</td>
<td>2.8</td>
</tr>
<tr>
<td>MetOH</td>
<td>a 0.77</td>
<td>1.8</td>
<td>15</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>b 0.9</td>
<td>2.4</td>
<td>15</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>c 1.2</td>
<td>3.8</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>$3 \mu m$</td>
<td>a 0.043</td>
<td>4.1</td>
<td>2.6</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td>b 0.069</td>
<td>5.7</td>
<td>2.6</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td>c 0.55</td>
<td>7.8</td>
<td>2.6</td>
<td>2.7</td>
</tr>
<tr>
<td>$10 \mu m$</td>
<td>a 0.16</td>
<td>2.6</td>
<td>2.6</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td>b 0.2</td>
<td>6.1</td>
<td>2.6</td>
<td>2.6</td>
</tr>
<tr>
<td></td>
<td>c 2.4</td>
<td>14</td>
<td>2.6</td>
<td>2.9</td>
</tr>
<tr>
<td>$25 \mu m$</td>
<td>a 0.63</td>
<td>0.79</td>
<td>2.6</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td>b 0.7</td>
<td>15</td>
<td>2.6</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>c 6.1</td>
<td>2.7</td>
<td>2.6</td>
<td>2.6</td>
</tr>
<tr>
<td>$50 \mu m$</td>
<td>a 1.7</td>
<td>0.63</td>
<td>2.6</td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td>b 2.4</td>
<td>1.5</td>
<td>2.6</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td>c 3.2</td>
<td>3.6</td>
<td>2.6</td>
<td>2.5</td>
</tr>
<tr>
<td>$100 \mu m$</td>
<td>a 0.82</td>
<td>1.7</td>
<td>2.6</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>b 1.02</td>
<td>3</td>
<td>2.6</td>
<td>2.6</td>
</tr>
<tr>
<td></td>
<td>c 19</td>
<td>2.4</td>
<td>2.6</td>
<td>2.6</td>
</tr>
</tbody>
</table>
greater for \(d = 1 \) (significantly above 1 decade) than for \(d = 2 \) (less than a factor 3). In addition, it was verified that estimated values with \(d = 1 \) were not centered within the confidence interval and corresponded mainly to local minimums. These results confirmed experimentally that both transport properties \(D \) and \(h_m \) cannot be inferred independently from raw kinetic data. The accuracy was besides dramatically increased with an approximation space taken into the mass flux (\(d = 2 \)).

As expected, similar \(K \) values were derived with high confidence for all tested \(d \) values when the equilibrium state was observed during the experiment (repetitions \(r_1 \) and \(r_2 \)). When it was not observed, \(d = 1 \) criterion gave only local minimums ranged with a confidence interval up to a factor 2 (repetition \(r_3 \)). Additionally, removing the last points of the kinetic \(r_3 \) (such that \(u > 0.7 \)) increased the previous uncertainty by a factor 2. This effect was not observed for \(d = 2 \) criteria.

4.2. \(K \) Effect

Parts c and d of Figure 3 present the desorption kinetic and KPD when ethanol is replaced by methanol as L phase for reference desorption conditions (for \(0.4 < L/K < 4 \) according to Table 1). The desorption rate in methanol was much higher than that in ethanol. Kinetics and KPD exhibited similar shapes, respectively. KPDs were, in particular, almost homothetic when a FDP regime, identified by a linear section, was achieved in the material. According to eq 12, this condition corresponded to \(BK \approx 3 \), which entails that the KPD slope was mainly controlled by the value of \(h_m \) in both L phases.

The criterion \(d = 1 \) failed to identify a similar \(D \) value for both conditions (Table 2). By contrast, the homothetic curvature in KPD shape during STC made it possible to determine a very similar \(D \) value. The existence of an STC regime was verified by noticing that the linear extrapolation of the FDP regime led to a different initial state (for \(u_{t=0} \)) with a lower desorption rate \(f_{t=0} \). Besides, the final equilibrium state was completely determined starting from the transition state between the FDP and STC regimes (before 40% of the whole migration occurred).

4.3. \(l_S \) Effect

Parts e and f of Figure 3 plot the effect of thickness for \(2l_S \) varying from 3 to 100 \(\mu \text{m} \) in reference desorption conditions. As expected, desorption kinetics were drastically modified when the thickness was changed. By comparison, the modifications in KPD were less noticeable.
2l₅ < 25 μm, KPD were linear in shape with the same maximum normalized flux (Iₜ₁₀⁻) of ~0.9 m/s⁻¹. For 2l₅ > 25 μm, KPD exhibited a significant curvature and showed a maximum normalized flux (Iₜ₁₀⁻) that decreased when l₅ increased. These simple observations are interpreted as the external mass transfer resistance controls, mainly the desorption kinetic, for low thicknesses, whereas a combination of both internal and external resistances act on desorption when the thickness is higher. The increase in the value of B when the thickness increased confirmed this interpretation of KPD.

Transport properties based on d = 1 were poorly identified; their quality depended strongly on the thickness, on the true B value in fact. However, the errors between both properties D and hₘ were highly correlated during the identification so that any reliable determination of the true B was not possible (Table 2).

By contrast, D, hₘ, and B results based on d = 2 were more robustly identified. The uncertainty and bias in hₘ and D were reliably distinguished. Thus, a d ≥ 2 methodology yielded low overestimated D values for low thicknesses, whereas the d = 1 methodology underestimated systematically the true D value by a factor up to 20 in similar conditions.

4.4. Typical Projected Confidence Regions. Typical projected confidence regions (PJCR) are compared in Figure 4 for both d = 1 and d = 2 methods applied to the data set r₃ (Figure 4 parts a and b). Both methods led to highly different topologies, an extruded “L” shape oriented along the hₘ dimension and an “I” shape oriented along the D dimension for d = 1 and d = 2, respectively.

For d = 1, the orientation of the confidence ellipsoid confirms that errors in estimated D and hₘ were strongly correlated (Figure 4b). Furthermore, the low convexity of the criterion at its minimum showed that the upper limits of D and hₘ were poorly bounded. This behavior explained why individual confidence intervals of both transport properties where non-centered on the found minimum value.

Such drawbacks were not observed with a d ≥ 2 criterion (Figures 4 parts d, e, and f). d = 2 yielded PJCR with deep valleys with almost isotropic properties at the minimum. The number of feasible situations was drastically decreased. The increase in well-poseness (optimality) of the least-squares problem was estimated by the trace and determinant of the information matrix. The variance of parameters was respectively decreased six times (A-optimality property), and the volume of the confidence ellipsoid of the regression estimates was decreased by a factor 5 × 10³ (D-optimality property).

5. Numerical Experiments

The effects of desorption level defined by s = [1 − minᵣ₋₁₋₋(uᵣ₋₁₋₋)]/(1 − uᵣ₋₁₋₋) and of K, Lₚ, and B values on both bias and confidence on D, hₘ, K parameters in controlled conditions of noise and sampling were assessed more systematically by numerical experiments. The maximum ratio l₅⁻²/Dₜ was set to 49 × 10⁵ s (4.6 days) to enclose the conditions experimentally explored. KPD were based on 20 simulated concentration data points that were sampled (i) at constant frequency (uniform sampling in time) or (ii) so that the variation in concentration between consecutive data points was constant (uniform sampling in concentration). Both situations corresponded to two extreme cases for the repartition of data in KPD. All data were blurred with 5% white noise and truncated according to min(1, u).

Dimensionless KPD, jₚ = f(u), were reconstructed as previously from eqs 24 and 25.

Figure 5. Simulated dimensionless desorption kinetics (B = 1000, K = 0.1, Lₚ = 0.01, and s = 50%). (a,b) raw kinetics and (c,d) corresponding KPD. Simulated data were based on 20 concentration data points including 5% of white noise. Data were as follows: (a,c) equisampled in time and (b,d) equisampled in concentration. Simulated data are plotted with symbols; the true and fitted curves are respectively plotted in dotted and solid lines.

5.1. Typical Effect of the Desorption Level on D, K, and hₘ Estimations from Kinetic Data and KPD. The effect of s on fitted desorption kinetics and KPD is illustrated in Figure 5 for B = 1000, K = 0.1, Lₚ = 0.01, and s = 50%. Uniform sampling in concentration increased the relative weight of initial kinetic data, whereas uniform sampling in time increased the relative weight of data associated to higher desorption rates. Both sampling strategies led apparently to similar fitted kinetics and KPD. However, the d = 1 criterion was not able to extrapolate the “real” desorption kinetic beyond s = 50% without introducing a positive bias. Such an error was responsible for a false prediction of the final equilibrium (almost 0 instead of 0.1) (Figure 5 parts a and b). Despite errors in both jₚ and u values, d ≥ 2 methods led to a better extrapolation of true results for s > 50%. The extrapolated equilibrium value ranged between 0.09 and 0.12 and was furthermore in very good agreement with the true value (Figure 5 parts c and d).

Capabilities of both d = 1 and d = 2 criteria to estimate D, K, and hₘ properties from previous data uniformly sampled in time are compared in Figure 6 from PJCR. Similar results were obtained with data uniformly sampled in concentration. The d = 1 method generated a low convex functional with many local minima and a large confidence ellipsoid that was stretched along hₘ and D directions. As a result, only the parameter D could be accurately estimated from kinetic information. By contrast, d = 2 generated a hilly functional where the optimal value laid in the bottom of a narrow valley opened toward low D values. Volume of confidence ellipsoid was 5 × 10⁵ lower with d = 2 and stretched along the axis (D, − hₘ). Although K and hₘ estimations were highly linear dependent, simultaneous estimations of D, K, and hₘ parameters were possible because their respective confidence intervals close to the optimal value were small (Figure 6 parts d and e).

5.2. Effect of B and s Level on Bias and Confidence on D, K, and hₘ Estimations. The previous analysis was generalized for a wide range of simulated conditions: B = [10⁻¹, 1, 10, 10², 10³, 10⁴] × K = [10⁻², 10⁻¹, 5 × 10⁻¹, 1, 2, 5] × Lₚ = [10⁻³, 5 × 10⁻³, 10⁻², 5 × 10⁻², 10⁻¹] × s = [30, 40, 50, 60,
70, 80, 100] and for both strategies of sampling. Since B was
the main explicative factor, relative bias and confidence intervals
inferred from different (K, L) values were averaged and
compared with B only. Results are plotted in Figures 7 and 8
for strategies based on uniform sampling in time and in
concentration, respectively. Since d_2 and d_3 criteria had
very similar efficiency, only the results for d_2 are given.

For almost all of the tested conditions, approximations of
parameters D, K, and h_m based on $d = 1$ criteria were poor
and highly sensitive to s. The estimation of D was achievable (with
a relative bias \sim 1 unit) for all tested s values only when B was
> 100. Accurate estimations of h_m, K, and B required s values
higher $> 70\%$. These results confirmed that noisy raw kinetic
data, which did not include the equilibrium state, were not
sufficient for a simultaneous estimation of D, K, and h_m
parameters.

$d = 2$ criteria significantly improved the previous method
by making possible low biased and confident estimations of $D,$
$K,$ and h_m for $B \geq 10$ and s values as low as 30%. Both sampling
strategies led to similar estimates of tested parameters. Only,
the estimation of B was slightly improved with a uniform
sampling in time by allowing an estimation down to $B = 1$ for
$s > 50\%$. It is emphasized that, when no accurate estimation of
any parameters $D, h_m, \text{or} K$ was reachable, identification
strategies based on $d \geq 2$ generally led to overestimation of
the true value of each parameter. By contrast, $d = 1$ strategy
could generate either underestimated or overestimated D values.

6. Conclusions and Prospects

A robust estimation strategy was proposed to simultaneously
identify three properties $p = [D, K, h_m]$ that control desorption
kinetics (or, equivalently, sorption kinetics) under two relevant
constraints constraints: low Biot values and incomplete kinetics.
The feasibility is demonstrated via a new approximation of 1D
diffusion equation coupled with a Robin boundary condition.
The approximating differential algebraic equation offers both
(i) a very efficient computational alternative to other analytic

Figure 6. Projected joint confidence regions (PJCR), respectively, to simulated results of Figure 5. PJCR were based on the following: (a,b,c) $d = 1$ and
(d,e,f) $d = 2$ criteria. Gray level values represent $\min(\Delta \chi^2, 8)$. The gradient of $\Delta \chi^2$ is superimposed as quiver plots. PJCR based on an approximation of the
local information matrix is also indicated. The axes of projections are plotted in dotted lines and correspond to identified values of $D, K,$ and h. The deviation
between the identified minimum and the intersection of the projection axis assesses the bias due to the identification procedure.
Figure 7. Relative bias and 95% confidence intervals on parameters D, K, h_m, and B estimated from 20 concentration data points equisampled in time and including 5% of noise. The estimations were based on the following: (a) $d = 1$ and (b) $d = 2$ criteria. Data were simulated for different B values, and s values ranged between 30% and 100%. Each depicted point was averaged over 30 simulations corresponding to all combinations of parameters $K = [10^{-2}, 10^{-1}, 5 \times 10^{-1}, 1, 2, 5] \times L^* = [10^{-3}, 5 \times 10^{-3}, 10^{-2}, 5 \times 10^{-2}, 10^{-1}]$.

100%
80%
70%
60%
50%
40%
30%
Figure 8. Relative bias and 95% confidence intervals on parameters D, K, h_m, and B estimated from 20 concentration data points equisampled in concentration and including 5% of noise. The estimations were based on the following: (a) $d = 1$ and (b) $d = 2$ criteria. Data were simulated for different B values, and s values ranged between 30% and 100%. Each depicted point was averaged over 30 simulations corresponding to all combinations of parameters $K = [10^{-2}, 10^{-1}, 5 \times 10^{-3}, 1, 2, 5] \times L^* = [10^{-3}, 5 \times 10^{-3}, 10^{-2}, 5 \times 10^{-2}, 10^{-1}]$.
or numeric approximations and (ii) explicit relationships between physical parameters and desorption rates. These features were combined within a generalized least-squares criterion that extends classification techniques by including important physical features such as the scaled mass flux at the solid–fluid interface (j^s) and its variation with the concentration. Since j^s values were derived from concentration measurements, errors in j^s and concentrations were expected to be partially correlated. The performances according to the number of distance contributions ($d = 1, 2, 3$) were analyzed in terms of bias and confidence on both experimental and simulated data. $d = 1$ strategies led to unreliable estimates of K and h_m for desorption levels < 70%. Besides, it is emphasized that $d = 1$ did not make possible accurate estimations of the mass Biot number. Criteria based on $d \geq 2$ drastically enhanced the accuracy and stability of identification procedure with typical confidence ellipsoid volumes that were reduced by a factor varying between 10^5 and 10^7. These improvements drew the conclusion that the simultaneous identification of D, K, L_ℓ, h_m values and B may be feasible and stable from scattered truncated kinetics for $B \geq 1$ and a wide range of migration conditions: $10^{-2} \leq K \leq 5, 10^{-1} \leq L^* \leq 10^{-1},$ and desorption levels as low as 30%.

The proposed $d \geq 2$ approach was mainly limited by the information available at the beginning of the migration process when the migration dynamics was the fastest (STC regime). On the basis of kinetics, including 20 points and 5% of white noise, it was, however, shown that the proposed strategy of signal reconstruction of the primitive, first, and second derivatives of the concentration kinetic was almost insensitive to the type of sampling: uniform sampling in either time or concentration. It must be emphasized that the proposed current approach might be used for any migration kinetics to estimate $D, K, L_\ell,$ and h_m parameters or dimensionless quantities such as $BK, B,$ and K/L^* when the cumulative amount of diffusant between both solid and liquid phases remains constant (i.e., without any further mass transfer or reactions). Further works appear desirable to extend results in conditions where boundary conditions vary arbitrarily with time.

Nomenclature

- A: local regularized regression operator defined in eq 27
- B: mass Biot number
- b: parameter in eq 16
- C_L: bulk concentration in the liquid phase (kg·m⁻³)
- C_S: local concentration in the solid phase (kg·m⁻³)
- C_S^*: residual concentration in the solid phase (kg·m⁻³)
- C_S^i: initial/typical concentration in the solid phase (kg·m⁻³)
- c: parameter in eq 16
- d: dimension of the approximation space in eq 28
- D: diffusion coefficient (m²·s⁻¹)
- D_{ij}^{μ}: mth differentiation operator corresponding to K_{ij} (see eq 25)
- F: information matrix
- K: partition coefficient ([kg·m⁻³]·[kg·m⁻³]⁻¹)
- K_{ij}^{μ}: collocation matrix corresponding to the ith data (see eq 25)
- h: filter bandwidth (s)
- h_m: mass transfer coefficient at the S–L interface (m·s⁻¹)
- J: Jacobian of the model
- j: mass flux density at the interface (kg·m⁻²·s⁻¹)
- j^*_d: dimensionless mass flux
- j^*_R: equivalent driving flux density in eq 12 (kg·m⁻²·s⁻¹)
- f^*: scaled flux defined in eq 24 (m·s⁻¹)
- l_ℓ: characteristic length scale of the liquid phase (m)
- l_S: characteristic length scale of the solid phase (m)
- L^*: dilution factor
- M: number of independent data in a data set
- m: differentiation order
- p: vector of unknown parameters
- R_D: equivalent resistance to diffusion in the P phase (s·m⁻¹)
- R_H: equivalent interfacial resistance in the L phase (s·m⁻¹)
- S_L: surface area of the solid–liquid interface (m²)
- s: desorption level
- t: time (s)
- u: Brownian density or equivalently dimensionless concentration in the solid phase
- \bar{u}: dimensionless residual concentration in the solid phase
- V_L: volume of the liquid phase (m³)
- v: reduced coordinate defined in Section 2.2.2
- X: reduced concentration defined in Section 2.3.3
- X_{\min}: minimal X value defined in eq 19
- x: spatial coordinate (m)
- x^*: dimensionless coordinate
- x^p: dimensionless position of the interface defined in Section 2.2.2
- W_{ij}^{μ}: weighting tensor in eq 32

Greek Letters

- α: proportionality coefficient defined in eq 12
- α^5: scaled value of α used in Section 2.4.2
- β: KPD curvature
- λ_i: coefficients in eq 28
- θ: dimensionless Fourier time
- γ^2: distance function
- $\gamma^2_{K^*}$: least-squares criterion
- σ_X: standard deviation of the quantity X (same unit as X)
- ω_{ij}: weighting kernel in eq 26
- ξ^2: regularization parameter in eq 25

Abbreviations

- BC: boundary condition
- FDP: fully developed parabolic regime
- KPD: kinetic phase diagram
- IC: initial condition
- ODE: ordinary differential equation
- PJCR: projected confidence region
- PDE: partial differential equation
- STC: short-time contact

Literature Cited

P

(9) Kendall, M. G.; Stuart, A. The advanced theory of statistics; Griffin: London, 1984; Vol. 2.

Received for review March 22, 2006
Revised manuscript received August 22, 2006
Accepted August 28, 2006